Шрифт:
Интервал:
Закладка:
Приближение двух протонов друг к другу для образования дейтрона – один из способов высвобождения энергии, заключенной в этом сильном взаимодействии, а также пример ядерного синтеза. Термин «синтез» используется для описания любого процесса, высвобождающего энергию в результате объединения двух или более ядер. В отличие от энергии, которая выделяется в ходе химической реакции под воздействием электромагнитной силы, сильное ядерное взаимодействие генерирует огромную энергию связи. Например, сопоставьте 0,5 МэВ энергии, выделяемой в результате образования дейтрона, с 6 эВ энергии, высвобождаемой в ходе химической реакции. Здесь, на Земле, такой синтез не происходит каждый день, потому что сильное взаимодействие возможно только на коротких расстояниях. Оно проявляется, лишь когда отдельные составные части находятся очень близко друг к другу, и начинает быстро уменьшаться, когда расстояние между ними становится больше фемтометра (что примерно равно размеру одного протона). Однако приблизить протоны на такое расстояние достаточно трудно из-за действующей между ними силы электромагнитного отталкивания. Один из способов добиться этого – ускорить движение протонов, что на самом деле означает наличие очень высокой температуры, поскольку температура по своей сути – не что иное, как показатель средней скорости объектов: молекулы воды в чашке горячего чая перемещаются быстрее молекул в кружке холодного пива. Чтобы начался процесс синтеза, необходима температура минимум 10 миллионов градусов, а по возможности – гораздо больше. К счастью для нас, во Вселенной есть места, где температура достигает и даже превышает минимум, требуемый для протекания процесса ядерного синтеза. Эти места – в самом сердце звезд.
Давайте совершим путешествие в прошлое, в космические темные века, менее чем через полмиллиарда лет после Большого взрыва, когда во Вселенной был только водород, гелий и вкрапления некоторых легких химических элементов. По мере расширения и охлаждения Вселенной под воздействием гравитации первичные газы постепенно образуют сгустки, набирая скорость в процессе движения друг к другу, подобно тому как эта книга начнет с ускорением падать на пол, если вы ее уроните. Стремительное движение водорода и гелия приводит к повышению их температуры, в результате чего большие сгустки газа становятся все более горячими и плотными. При температуре 10 тысяч градусов электроны сходят со своих орбит вокруг ядер, оставляя после себя газ, состоящий из протонов и электронов и известный как плазма. Отдельные электроны и протоны продолжают неуклонно, все быстрее и быстрее, двигаться внутрь сгустка в процессе неумолимо ускоряющегося сжатия. Необратимое на первый взгляд падение плазмы останавливается при температуре 10 миллионов градусов, когда происходит нечто очень важное – то, что превращает горячий сгусток протонов и электронов в жизнь и свет Вселенной, в великолепный источник ядерной энергии, в звезду. Отдельные протоны сливаются воедино и образуют дейтрон, который, в свою очередь, может слиться с еще одним протоном и образовать гелий, выделяя при этом драгоценную энергию связи. Так новая звезда превращает небольшую часть своей исходной массы в энергию, согревающую сердцевину звезды и помогающую ей сопротивляться гравитационному сжатию на протяжении минимум нескольких миллиардов лет. Этого времени достаточно для согревания холодных каменистых планет, образования жидкой воды, эволюции животных и возникновения цивилизаций.
Наше Солнце – звезда, которая находится сейчас на комфортном этапе середины жизненного цикла: она сжигает водород, чтобы образовать гелий. При этом Солнце теряет 4 миллиона тонн массы каждую секунду каждого дня каждого тысячелетия, превращая 600 миллионов тонн водорода в гелий за одну секунду. Такое изобилие, составляющее основу нашей жизни, не может длиться вечно даже в случае нашего местного сгустка плазмы, достаточно большого, чтобы содержать в себе миллион таких планет, как Земля. Так что же происходит, когда в сердце звезды заканчивается водородное топливо? Без ядерного источника давления, направленного вовне, такая звезда снова будет сжиматься и становиться все горячее. Со временем при температуре около 100 миллионов градусов гелий начнет гореть и процесс сжатия звезды снова остановится. Мы используем слово «гореть», хотя это не совсем точное обозначение происходящего. На самом деле мы имеем в виду начало процесса ядерного синтеза, чистая масса конечных продуктов которого меньше массы исходных частиц, сливающихся воедино. В полном соответствии с формулой E = mc² эта потеря массы приводит к выработке энергии.
Процесс сжигания гелия заслуживает более тщательного анализа. Два его ядра, слившись воедино, образуют определенную разновидность бериллия с четырьмя протонами и четырьмя нейтронами. Эта разновидность, получившая название бериллий-8, существует всего одну десятимиллионную одной миллиардной доли секунды, после чего снова распадается на ядра гелия. Жизнь бериллия-8 настолько мимолетна, что вряд ли он способен просуществовать достаточно долго, чтобы соединиться с чем-то еще. По сути, без посторонней помощи именно это всегда и происходило бы, что заблокировало бы путь к синтезу более тяжелых элементов внутри звезд. В 1953 году, когда понимание ядерной физики звезд находилось в зачаточном состоянии, астроном Фред Хойл[39] заключил, что внутри звезд должен протекать процесс образования углерода, что бы ни говорили специалисты по ядерной физике. Он был твердо убежден, что во Вселенной больше нет места, где было бы возможно образование углерода, и предположил, что это может произойти лишь при условии наличия более тяжелой разновидности ядра углерода – ядра, которое может быть весьма эффективно сформировано в результате слияния недолговечного бериллия-8 и третьего ядра гелия. Хойл пришел к выводу, что эта теория верна только в случае, когда более тяжелый углерод на 7,7 МэВ/с2 тяжелее обычного углерода. Если в недрах звезды образовалась новая форма углерода, значит, открывается путь и для создания других, более тяжелых элементов. В то время такая разновидность углерода еще не была известна, но ученые, побуждаемые предсказанием Хойла, без промедления начали ее искать. Буквально через несколько дней после того, как Хойл выдвинул свою гипотезу, специалисты по ядерной физике из лаборатории Келлога при Калифорнийском технологическом институте без тени сомнений подтвердили ее истинность. Эта удивительная история помогает нам обрести уверенность в правильности понимания устройства звезд: нет лучшего доказательства красивой теории, чем проверка исходного предположения в ходе эксперимента.
В наши дни существует гораздо больше доказательств, подтверждающих теорию эволюции звезд. Один поразительный пример связан с изучением нейтрино, о которых мы уже упоминали выше. Нейтрино всегда выделяются в результате превращения протона в нейтрон в процессе ядерного синтеза. Это призрачные частицы, которые практически никогда не взаимодействуют с чем бы то ни было и, будучи таковыми, беспрепятственно покидают Солнце сразу же после их образования. В действительности поток нейтрино настолько огромен, что каждую секунду через каждый квадратный сантиметр земной поверхности проникает около 100 миллиардов нейтрино. Информацию об этом легко прочитать, но гораздо труднее осознать, поскольку она поражает воображение. Поднимите руку перед собой и посмотрите на ноготь большого пальца: каждую секунду сквозь него проходит 100 миллиардов субатомных частиц, исходящих из сердцевины нашей звезды. К счастью для нас, нейтрино почти всегда проходят сквозь наши руки (как и сквозь всю поверхность Земли) так, будто их вообще не существует. Тем не менее в редких случаях они вступают во взаимодействие, и вся хитрость в том, чтобы разработать оборудование, позволяющее зафиксировать эти редкие случаи. Детектор Super-Kamiokande, расположенный на большой глубине в шахте Моцуми неподалеку от города Хида в Японии, может решить эту сложную задачу. Super-Kamiokande – это огромный цилиндр высотой и диаметром около 40 метров, содержащий 500 тысяч тонн очищенной воды и окруженный более 10 тысячами фотоэлектронных умножителей, которые способны фиксировать самые слабые вспышки света, образующиеся в момент столкновения нейтрино с электроном в воде. Благодаря этому детектор способен «увидеть» нейтрино, которые испускает Солнце, причем количество прибывающих нейтрино согласуется с прогнозируемыми показателями, установленными на основании предположения о том, что нейтрино образуются в процессе ядерного синтеза, протекающего в недрах Солнца.