litbaza книги онлайнДомашняяКарта Вселенной - Приямвада Натараджан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 33 34 35 36 37 38 39 40 41 ... 69
Перейти на страницу:

Особенно важно подчеркнуть, что разница между двумя полученными значениями омеги свидетельствует о весьма серьезном изъяне в наших теоретических построениях. Живем ли мы во Вселенной, находящейся перед критической или непосредственно в критической неуравновешенной точке? Нам можно вспомнить мнение Эддингтона, который полагал, что существует лишь один надежный способ определить, какое из этих значений является истинным, — необходимо проверить применимость исходной диаграммы Хаббла на предельно удаленных от нас расстояниях и даже дальше. Из ОТО следует, что скорость расширения Вселенной связана с ее содержимым и поэтому наблюдаемое изменение скорости расширения во времени должно привести нас к правильному значению омеги. Однако для расширения диаграммы Хаббла астрономам следовало обзавестись новыми и очень яркими «маяками», так как цефеиды Ливитт (наши первые «маяки», или «космологические линейки») для новых задач были попросту тусклыми. Пришло время найти новые космические стандартные свечи, которые были бы видны до самого края Вселенной. И ответ был найден — сверхновые звезды (взрывы звезд), превосходящие по яркости цефеиды в сотни тысяч раз, что позволяет регистрировать их на гигантских удалениях. Свет распространяется с конечной скоростью, и поэтому, наблюдая очень удаленные участки Вселенной, мы фактически смотрим назад по времени. Если мы действительно живем во Вселенной с малой омегой, то, используя для зондирования сверхновые звезды, мы способны уловить замедление процесса расширения Вселенной в прошлом.

Если единственная проблема, которую нужно решить, состоит в том, чему равна омега — 0,3 или 1, то это просто проблема учета — найти пропавшее вещество. И здесь — поворот событий. Если космологическая постоянная лямбда, уже исключенная к этому времени из уравнений Эйнштейна самим Эйнштейном, имеет не нулевое значение, то она также будет вносить свой вклад в значение этого параметра. Как вы, вероятно, можете догадаться, включение в указанную «смесь» величины лямбда позволяет нам одним махом избавиться от двух факторов несогласованности теории, о которых шла речь выше.

Поэтому космологическая постоянная, хотя немного и неприятна, дала удобный способ согласования оценок омеги по данным COBE и измерений плотности галактик. Если бы значение этой постоянной равнялось 0,7, то все теоретические расчеты могли быть отлично согласованы, однако это означало бы, что нашу Вселенную ждет несколько иное и необычное будущее. Дело в том, что ему соответствует не только описанное выше неустойчивое состояние «на цыпочках», но и плоская геометрия на больших масштабах. При этом все искривления пространства-времени сглаживаются. Выше мы говорили лишь о содержимом Вселенной, однако стоит отметить, что еще до начала упомянутой «инвентаризации» массы и ее компонент предпринимались попытки независимым образом определить геометрию Вселенной. Астрономы использовали также стандартные свечи, чтобы выяснить, в каком пространстве мы живем — в плоском или искривленном. В 1961 г. протеже Хаббла Аллан Сэндидж опубликовал статью, в которой предлагалась программа астрономических наблюдений, нацеленная именно на измерения геометрии Вселенной для регистрации скорости ее расширения в настоящее время и ожидаемого замедления этого процесса. Проект был составлен целиком в контексте модели Вселенной без космологической постоянной и плотностью материи с омегой ниже критического значения, равного 1. В качестве обоснования своих предположений Сэндидж указывал, что Вселенная с не равной нулю космологической постоянной должна будет скорее ускоряться, а не замедляться{10}. Это ясное и дерзкое противопоставление двух вариантов реальности, ускорение против замедления и возможность существования модели в том или ином состоянии, описанная в статье Сэндиджа еще в 1961 г., было забыто на 35 лет, и даже сам автор не догадывался, что она содержит идеи, достойные Нобелевских премий.

Ключом к решению проблемы стало изучение сверхновых звезд. Сейчас они превратились в один из важнейших инструментов астрономических исследований вообще. Но ученым потребовалось детальней разобраться с их физикой, чтобы оценить возможность использования сверхновых в качестве стандартных свечей. Все собранные данные стали складываться в общую картину к 1985 г., когда астроном-наблюдатель из Калтеха Уоллес Сарджент совместно со своим бывшим аспирантом Алексом Филиппенко (который к этому моменту был постдоком в Беркли) сумели заметить очень интересные закономерности в спектрах многих сверхновых. Они предположили, что такие звезды относятся к единому классу и имеют схожие характеристики. Изменение видимых величин сверхновых типа Ia сразу после взрыва, а именно кривая блеска, очень однородно. А когда сверхновые находятся на пике яркости, в их спектре наблюдается отпечаток химического элемента — кремния, образующегося при взрыве. Именно эти свойства и позволили использовать сверхновые класса Iа в качестве стандартных свечей, поскольку они являются особо яркими объектами со стандартными характеристиками, что делает их удобным инструментом, чтобы вглядываться дальше во Вселенную и назад во времени.

Подобно другим астрономическим объектам, наблюдаемая яркость любой сверхновой обратно пропорциональна квадрату расстояния до нее. В нашей локальной Вселенной красное смещение в спектре сверхновой пропорционально расстоянию до нее (это следует из закона Хаббла). Поэтому, построив график зависимости яркости сверхновой от степени красного смещения (диаграмму Хаббла) и убедившись в том, что эту сверхновую действительно можно использовать в качестве стандартной свечи, мы получаем возможность продлить данные вне графика диаграммы Хаббла. Конечно, это можно делать лишь при условии, что скорость расширения Вселенной не изменяется. Однако, как говорилось выше, эта скорость может меняться за то время, пока луч света доходит от сверхновой до нас, и при этом могут изменяться сами расстояния. Причем если скорость расширения Вселенной уменьшается (замедление процесса, чего следует ожидать во Вселенной с небольшим значением омеги и без космологической постоянной), то удаленная от нас сверхновая будет казаться более яркой, чем во Вселенной, расширяющейся с постоянной скоростью. Соответственно, в противном случае, когда скорость расширения Вселенной увеличивается (ускорение процесса, чего следует ожидать при ненулевом значении космологической константы, как отмечал Эддингтон), яркость сверхновой будет (при том же красном смещении) слабее, чем во Вселенной с нулевым значением лямбды. Кроме того, мы должны проверить, действительно ли используемые сверхновые являются стандартными свечами (то есть обладают ли все они одинаковой светимостью). Стоит отметить, что, хотя астрономы и отметили сходство сверхновых между собой, на практике встречаются и вариации, вследствие чего использование сверхновых в качестве стандартов измерения (линеек и свечей) требует от астрономов дальнейшего изучения их физических свойств и учета влияния и роли вариаций при практической обработке получаемых результатов. Детальное изучение экспериментальных данных, относящихся к взрывам ближайших к нам сверхновых, позволяет более точно калибровать отклонения от нормы, а затем применять эту калибровку для стандартизации более далеких сверхновых того же класса, то есть фактически сдвигать границы применимости диаграммы Хаббла на все более удаленные области Вселенной.

1 ... 33 34 35 36 37 38 39 40 41 ... 69
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?