litbaza книги онлайнДомашняяЧудесная жизнь клеток. Как мы живем и почему мы умираем - Льюис Уолперт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 34 35 36 37 38 39 40 41 42 ... 48
Перейти на страницу:

В 1928 году Александр Флеминг открыл пенициллин, способный уничтожать многие виды бактерий. Работая в лаборатории госпиталя Святой Марии в Лондоне, он заметил, как вокруг пятнышка плесени, оказавшегося в чашке с искусственной питательной средой, где размножались бактерии, образовался круг, в пределах которого бактерии не могли размножаться. Флеминг пришел к выводу, что плесень выделяет вещества, сдерживающие рост бактерий и убивающие их. Термин «пенициллин» Флеминг предложил для того, чтобы обозначить фильтрат чистой культуры плесени. На ранних стадиях исследований пенициллина Флеминг обнаружил, что он наиболее эффективен лишь против определенных видов бактерий. Это несколько охладило его пыл. Сначала Флеминг выразил оптимизм по поводу того, что пенициллин может стать панацеей от многих болезней, однако в ходе дальнейших экспериментов пришел к выводу о том, что пенициллин не в состоянии находиться в человеческом теле достаточно долго, чтобы успеть поразить бактерии.

Но в 1939 году австралийский ученый Говард Флори и группа исследователей из Оксфордского университета сумели доказать, что, будучи впрыснутым в ткани животных, пенициллин чрезвычайно эффективно расправляется с бактериями. Попытки этих ученых лечить людей оказались поначалу не слишком успешными из-за недостаточных объемов вводимого пенициллина, но тем не менее им удалось значительно продвинуться вперед и заложить фундамент для дальнейших исследований свойств чудесной плесени. В 1942 году группе исследователей из Оксфордского университета впервые в мире удалось успешно применить пенициллин для лечения человека. К 1944 году пенициллин производился уже в массовом порядке. Во время Второй мировой войны применение пенициллина стало основным фактором снижения уровня смертности в войсках антигитлеровской коалиции — считается, что благодаря пенициллину удалось спасти от 12 до 15 процентов от общего числа раненых. Воздействие пенициллина на болезнетворные бактерии происходит за счет того, что он взаимодействует с определенными белками, входящими в состав оболочек бактериальных клеток, и тем самым приводит к смерти бактерии. Но вот воздействовать на вирусы пенициллин уже не может.

Вирусы являются мощными источниками инфекции. В состав вирусов входят те же самые молекулы, которые присутствуют и в клетках, однако вирусы не способны размножаться самостоятельно — в этом смысле они не являются вполне живыми существами. Размножаться они могут, лишь попав в клетку и используя для этого клеточные механизмы. Их называют «химическими зомби», и эти «зомби» причиняют серьезный вред, когда им удастся проникнуть внутрь клетки. Вирусы исключительно малы и поэтому способны свободно проходить через самые совершенные фильтры. Они содержат в себе относительно малое число генов — от трех до нескольких сотен, которые заключены в белковую оболочку. В дополнение к нуклеиновым кислотам, из которых построены ДНК либо РНК вирусов, вирусы содержат также три класса белков: белки, необходимые для их размножения, белки, необходимые для создания структуры вирусов, и белки, которые будут воздействовать на клетку, когда вирус в ней окажется.

При попадании вируса в клетку она предпринимает попытки предотвратить его размножение, для которого вирус использует особую молекулу РНК, состоящую из двойной спирали. Один из способов защиты клетки заключается в производстве белка интерферона, стимулирующего активность гена, который повреждает РНК и тем самым предотвращает размножение вирусов. Но при этом клетки подвергают опасности свои собственные РНК, над которыми также нависает угроза уничтожения, и порой случается так, что клетка уничтожает саму себя ради того, чтобы предотвратить размножение вируса. Интерферон также усиливает активность отдельных клеток-убийц, входящих в состав адаптивной иммунной системы, — они призваны уничтожать клетки, инфицированные вирусами. Несмотря на это, многим вирусам удается беспрепятственно проскользнуть через защитные рубежи.

Первый шаг на пути распространения вирусной инфекции состоит в установлении связи вируса с клеточной оболочкой. Вирус соединяется с оболочкой, становится ее частью — и просачивается внутрь клетки. Так поступает, например, вирус СПИДа. Существует и более сложный способ проникновения в клетку, связанный с «пробиванием» бреши в клеточной оболочке. В любом случае, оказавшись в клетке, вирус начинает паразитировать на ней, активно используя ее биологические механизмы для синтеза своих собственных белков. Это происходит благодаря наличию во многих вирусах белков, которые воздействуют на деятельность клеток таким образом, что они вместо производства собственных белков начинают вырабатывать белки вируса. Образовавшиеся внутри клетки белки и нуклеиновые кислоты вируса тут же соединяются и образуют новые вирусы.

Размножение вирусов внутри инфицированной клетки может привести к тому, что клеточная оболочка лопнет, клетка разорвется и из нее наружу будет выброшено множество новых вирусов, которые станут заражать соседние клетки. Так происходит, когда мы простужаемся, — существует около сотни вирусов, вызывающих простуду. Вирус простуды предпочитает инфицировать клетки, выстилающие носовые и дыхательные пути. Обычные для простуды симптомы, такие, как жар, головная боль и усталость, вызываются веществами, которые выделяют инфицированные клетки. Впрочем, эти вещества не причиняют вреда тканям организма.

В отличие от вируса, вызывающего обыкновенную простуду, вирус гриппа способен наносить вред тканям; поэтому сопровождающие грипп болезненные симптомы не являются следствием лишь одной воспалительной реакции организма на вирус. В тяжелых случаях грипп может привести к воспалению легких. До начала XX века воздействие вируса гриппа на людей было относительно мягким, однако затем появились новые его разновидности. Одна из них вызвала эпидемию 1918 года, которая унесла жизни более 40 миллионов человек по всему миру — больше, чем погибло за всю Первую мировую войну. Этот вирус провоцировал иммунную систему организма на чрезмерную реакцию: сигналы, которые призывали клетки иммунной системы к месту заражения, оказывались настолько сильными, что место заражения начинало буквально кишеть клетками иммунной системы, из-за чего дыхательные пути блокировались и разрушались ткани.

Гены некоторых вирусов записаны не в ДНК, а в РНК. Когда такие вирусы проникают внутрь клеток, то их РНК преобразуется в ДНК, и эта ДНК начинает синтезировать белки, из которых образуются новые вирусы. Так происходит с вирусом СПИДа, гены которого закодированы в РНК; образующаяся на ее основе ДНК может скрываться в ДНК хозяйской клетки, находящейся в хромосоме. Это затрудняет борьбу с ней при помощи антивирусных препаратов. Еще один пример вируса на базе РНК — вирус бешенства. Он размножается в клетках мышц и в нервных окончаниях и по нервам мигрирует в центральную нервную систему, вызывая схожие с гриппом симптомы, которые могут привести к частичному параличу, деменции (слабоумию) и даже к смерти.

Антивирусные препараты действуют на болезнетворные штаммы вирусов — они связываются либо с находящимися на клеточной оболочке рецепторами (с ними вступает в контакт сам вирус, когда пытается проникнуть в клетку), либо с той частью оболочки вируса, которая контактирует с клеточной оболочкой; в обоих случаях вирус теряет способность проникнуть в клетку. Но к сожалению, вирусы и бактерии в состоянии вырабатывать сопротивляемость лекарствам. Бактерии даже способны обмениваться между собой генетической информацией путем передачи генов и за счет этого передавать невосприимчивость к антибактериальным препаратам новым поколениям бактерий. Соединение двух бактерий с передачей через это соединение ДНК со стороны похоже на примитивный половой акт.

1 ... 34 35 36 37 38 39 40 41 42 ... 48
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?