Шрифт:
Интервал:
Закладка:
Пятое Компьютерные прогнозы должны корректироваться специалистами
В ситуациях с высокими ставками от ИИ требуется прогноз, который не только точен, но и позволяет принять адекватное решение человеком в форс-мажорных ситуациях. Это предполагает, что человек должен доверять ИИ и понимать, каким образом он пришел к тому или иному выводу аналитического, а тем более прогнозного характера. Между тем, в значительной степени под воздействием разработчиков ИИ, лицам, принимающим решения, ИИ навязывается как полностью автономная система, принимающая финальное решение. Особенно это характерно сегодня для финансово-инвестиционной сферы, где роботизированные платформы без участия человека ежедневно осуществляют не менее 85 % сделок на суммы в сотни миллиардов долларов.
Это полностью относится и к медицине. Например, уже в ходе нынешней эпидемии ИИ, связанные с распознаванием образов и температурным контролем, использовались для блокировки или напротив разрешения доступа в аэропорты, супермаркеты, аптеки и общественные места. На эти системы потрачены огромные средства, которые могли бы использоваться, например, для поставки медицинской техники. Как показывает опыт, такого рода использование ИИ достаточно быстро разочаровывает лиц, принимающих решения, в силу чрезвычайной неточности диагностики. Подавляющая часть людей с повышенной температурой, которые могли бы быть распознаны как больные Covid-19, просто остаются дома и вызывают к себе друзей, родственников, доставщиков продуктов и т. п. Тем самым ключевая функция – изоляция больных от здоровых – не соблюдается, а дорогостоящие решения оказываются излишними.
Успешное использование ИИ, например, в системе Medicare свидетельствует о следующем. ИИ не должен выносить вердиктов. ИИ способен на распознавание с использованием большого числа данных подозрительных персон, окончательное решение по которым должны принимать не полицейские, а врачи-эпидемиологи.
Шестое Избыточные ожидания
Wired опубликовал статью «ИИ-эпидемиолог послал первые предупреждения о вирусе в Ухане». Эта статья базируется на том, что компания ИИ BlueDot31 декабря 2019 года сообщила о возможности вспышки нового заболевания. Тем не менее, мягко говоря, это не совсем так. Как сообщила ABCNews, американская разведка предупредила администрацию Д. Трампа о появлении нового коронавируса, вероятно, в результате случайной утечки из лаборатории в Ухани еще в ноябре 2019 года. Кроме того, в открытом доступе в Интернете в конце декабря 2019 года появился видеоролик с обращением китайского врача о появлении опасного нового вируса. Однако Д. Трамп и его администрация никак не среагировали и не предприняли никаких мер по подготовке страны к встрече с грозным вирусом.
В реальности BlueDot совместно с Бостонской детской больницей еще в 2018 году начал работать над принципиально новым проектом. Суть его в том, чтобы с использованием ИИ аккумулировать текстовые, аудио и видео материалы СМИ, интернет-платформ и блогеров, которые касаются вспышек новых и существующих инфекционных заболеваний и в целом обсуждений по поводу болезней. В рамках этой работы был создан комплекс раннего распознавания вирусных опасностей. В данном случае мы имеем пример не фейкового предсказания, а вполне адекватного и эффективного использования ИИ для обработки огромных массивов информации и выделения из них признаков, характеризующих возможность инфекционного заболевания. Это – классический пример использования ИИ по назначению, а именно для распознавания ранних сигналов и опережающего реагирования на них. После получения подобной информации в дело вступают вирусологи.
Таким образом, ИИ, будучи весьма неточным прогнозистом, является неоценимым аналитиком для работы с огромными, разноформатными, в том числе неочищенными данными. В этом случае ИИ не выносил вердиктов и тем более не прогнозировал, а привлекал внимание вирусологов к определенным аномальным явлениям и событиям. А дальше в дело вступали люди. Даже по мере совершенствования ИИ вряд ли он сможет разделять новые, но малоопасные и локальные вспышки заболеваний от ранних стадий глобальных пандемий.
Математики прошлого века в отличие от коммерсантов-компьютерщиков настоящего, особо оговаривали, что математико-статистические методы с использованием известных тогда моделей не могут предсказывать с высокой степенью вероятности редкие, а тем более уникальные или принципиально новые процессы и события. Новых математико-статистических методов не появилось и по сегодняшний день. Если не пытаться навязать ИИ функцию прогнозиста и машины, принимающей финальные решения, а использовать для распознавания (в том числе на основе зашумлённых данных, событий, объектов, субъектов и т. п.), то использование программно-аппаратных средств, ныне называемых ИИ, будет весьма полезным.
Например, в самом начале апреля 2020 года губернатор Калифорнии Гэри Ньюсом использовал BlueDot для распознавания потенциальных источников дальнейшего распространения вируса на основе больших массивов данных, характеризующих не только лиц, проживающих в штате, но и различные характеристики отдельных локаций, вплоть до кварталов, а также санитарного состояния в тех или иных районах.
ИИ использовался губернатором не для прогнозирования хода эпидемии, а для снабжения эпидемиологов, администраторов и финансистов исходными данными для сосредоточения внимания медицинских машин, полиции, волонтеров, финансирования этих мероприятий применительно к конкретным территориям и районам штата. Иными словами, ИИ использовался для того, в чем он силен, а именно для классификации и нахождения новых, неочевидных критериев этой классификации в дополнение к традиционным.
Седьмое Будут непредвиденные последствия
Реализация ИИ, как правило, имеет тревожные последствия второго порядка за пределами решений конкретной задачи, на которую нацелены программно-аппаратные комплексы. Например, предоставление ИИ права строить прогнозы, а тем более принимать решения, предполагает небезопасное накопление особенно чувствительных для людей данных. Широкий, по сути, бесконтрольный доступ к медицинской, лечебной, а в отдельных случаях правовой конфиденциальной информации с одной стороны может передать компаниям-разработчикам недопустимые с точки зрения людей и общества данные, а с другой – является желанной добычей киберкриминала и объектом возможных утечек.
Для информации. 16 апреля 2020 года заместитель помощника директора ФБР по борьбе с киберпреступностью Тоня Угорец заявила, что хакеры, действовавшие в интересах иностранных государств, взломали сети американских компаний, проводящих исследования Covid-19. Она рассказала об этом участникам интернет-дискуссии, организованной вашингтонским Институтом Аспена.
Угорец не уточнила названия хакерских группировок и государств, в чьих интересах действовали киберпреступники: зафиксировано несколько вторжений в сети некоторых учреждений, особенно тех, которые публично заявили о проведении исследований, связанных с Covid-19.
Угорец отметила, что учреждения, которые работают над разработкой перспективной терапии или потенциальной вакцины, безусловно заинтересованы в публичном освещении своей деятельности. Тем не менее, по ее словам, в этом случае такими учреждениями начинают интересоваться «другие государства, заинтересованные в сборе подробностей» проводимых исследований и, возможно, даже в «краже конфиденциальной информации, которой обладают эти учреждения».
Представитель ФБР добавила, что хакерские группировки, поддерживаемые иностранными