Шрифт:
Интервал:
Закладка:
7. Изображение, сделанное с помощью окрашивания Гольджи. На иллюстрации представлены клеточные тела, центральная часть нейрона, получающие информацию дендриты (разветвленные волокна вокруг ядра) и аксон (длинный вертикальный отросток), который передает эту информацию
Диалог клеток
Сегодня мы знаем о нейронах гораздо больше. Одним из фундаментальных их свойств является способность вступать в контакты между собой посредством отростков, дендритов и аксонов. Подобно ветвям дерева, дендриты нейрона разветвляются вокруг центральной части, которая называется клеточным телом, с целью установления контакта с другими нервными клетками и получения от них информации. Другой отросток, который называется аксоном, передает затем эту информацию другим нейронам. Речь идет об открытом Кахалем законе «динамической поляризации»: информационный поток проходит только в одном направлении от одного полюса нейрона (один из его дендритов или клеточное тело) к другому (аксону), откуда он передается другим нейронам (рисунок 8). Место контакта между двумя нейронами называется синапсом.
Длина аксонов доходит до нескольких сантиметров, что в масштабах клетки является огромными размерами. Этот показатель даже может достигать длины один метр в случае с аксонами, управляющими работой мышц, – они идут от головного мозга к спинному мозгу. Аксоны часто собираются в большие пучки и образуют таким образом настоящие «автотрассы», обеспечивающие быструю коммуникацию между удаленными участками мозга. Такое объединение аксонов в один пучок представляет собой уникальную особенность мозга и обусловливает его поразительную способность быстрой обработки информации.
8. Типичный синапс образуется между окончанием аксона и дендритом, клеточным телом или аксоном другого нейрона
Функционирование синапсов
На идущем сверху вниз срезе мозга человека видна типичная картина: сероватая кора с многочисленными извилинами, которая покрывает другие структуры, включая беловатый слой – так называемое «белое вещество» (рисунок 9). В то время как белое вещество состоит главным образом из пучков аксонов, кору мозга образуют клеточные тела и дендриты. У человека кора мозга объединяет приблизительно 16 миллиардов нейронов. Каждый нейрон устанавливает как минимум одну тысячу контактов с другими нейронами – поэтому число синапсов в мозге человека намного превышает общее число звезд в галактике Млечный Путь.
Как эти синапсы передают информацию? Давайте изучим обмен, который происходит между аксоном первого нейрона и дендритом второго нейрона. Окончание аксона и дендрит образуют между собой крошечное пространство в несколько десятков нанометров, которое называется синаптической щелью (рисунок 10).
9. Поперечное сечение головного мозга во фронтальной плоскости перпендикулярно его переднезадней оси. Видимые полости называются желудочками
10. Функционирование типичного синапса
В окончании аксона содержатся пузырьки, наполненные молекулами – нейромедиаторами (приблизительно 4 000 молекул в одном пузырьке). Когда электрический сигнал (потенциал действия) проходит через аксон и достигает его окончания, мембрана пузырьков сливается с мембраной нервного окончания, высвобождая нейромедиаторы в синаптическую щель. Это очень быстрый процесс: он продолжается приблизительно 0,6 миллисекунды. Высвободившиеся нейромедиаторы в синаптической щели вступают тогда в контакт с окончанием нейрона, получающего информацию. Часто речь идет о небольших мембранных выростах или дендритных шипиках, покрытых рецепторами, которые специфически подходят к нейромедиаторам – подобно тому, как замок подходит своему ключу. Эти молекулярные ключи открывают двери мембраны: поры, ионные каналы, позволяют ионам проходить через эту преграду. Проходящие через нейрон зараженные частицы (в основном ионы натрия и калия) меняют разность электрического потенциала между внутренней и внешней сторонами мембраны дендрита. Затем нейромедиаторы будут снова захвачены аксоном либо для повторного использования, либо они будут разрушены в синаптической щели.
Между возбуждением и торможением
Какую роль играет впоследствии эта разность потенциала на уровне постсинаптического нейрона (нейрон, к которому приходит сигнал)?
Одни нейромедиаторы, известные как возбуждающие типа глутаминовой кислоты, способствуют уменьшению разности потенциала (деполяризация); другие нейромедиаторы, известные как блокирующие типа гамма-аминомасляной кислоты (ГАМК), приводят к ее увеличению (гиперполяризация). Нейрон является не только ретранслятором сигнала, передаваемого через синапс, – он постоянно суммирует поступающие на его дендриты сигналы, чтобы «решить», будет ли он передавать в свою очередь разность потенциала действия дальше или нет. Когда разность потенциала падает ниже порогового уровня через несколько синапсов, то нейрон отправляет потенциал действия через свой собственный аксон и процесс начинается сначала: второй нейрон передает сигнал третьему нейрону и т. д. От одного синапса к другому нейроны образуют таким образом функциональные соединения с другими нейронами. В постоянном взаимодействии нейромедиаторов и электрических сигналов они получают и передают данные по мозговым цепям, размер которых варьируется от нескольких клеток до крупных сетей, полностью охватывающих весь мозг.
Гармоничный баланс между торможением и возбуждением
Поддержание баланса между торможением и возбуждением обеспечивает нормальное функционирование нейронных сетей.
При гиперполяризации мембраны нейрона тормозные нейромедиаторы затрудняют ее деполяризацию. В результате ингибируется функционирование постсинаптического нейрона, так как ему становится сложнее запустить активацию потенциала действия. Если процессы торможения не протекают должным образом, то возникает риск чрезмерной и неконтролируемой разрядки нейронов, что приводит в худшем случае к парциальным или общим эпилептическим припадкам.
Вот поэтому противоэпилептические препараты направлены на восстановление физиологического равновесия между возбуждением и торможением путем регулирования открытия ионных каналов, поддержания тормозного действия ГАМК или уменьшения возбуждающего действия глутаминовой кислоты. Такие антидепрессанты нового поколения, как флуоксетин или сертралин, нейтрализуют повторный захват нейромедиатора серотонина. В результате серотонин остается свободным в синаптической щели и действует дольше.
Тщательно отобранные синапсы
В отличие от других клеток нашего тела, которые беспрестанно отмирают и заменяются новыми, нейроны мозга почти никогда, за редким исключением, не восстанавливаются. Мы сохраняем одни и те же нейроны на протяжении всей жизни и теряем те из них, которые вырождаются! Однако эта утрата не столь уж катастрофична: при рождении у нас приблизительно 100 миллиардов нейронов и эта цифра уменьшается у взрослого на 15 %. Тем не менее можно задаться вопросом, как нам удается усваивать новую информацию на протяжении всей жизни, если количество нейронов постоянно снижается.
Обучение действительно является одним из самых впечатляющих феноменов когнитивной жизни. Способности к обучению у ребенка превышают возможности самых мощных компьютеров! Сейчас уже хорошо известно, что краеугольным камнем обучения является беспрерывное изменение количества синапсов и их активности. По мере того как мы учимся и взрослеем, наш опыт подкрепляет те мозговые цепи, которые оказываются наиболее эффективными, в