Шрифт:
Интервал:
Закладка:
Шенстоун публично поблагодарил Хауленда в тот же год, когда компания Supermarine приступила к проектированию самолета с эллиптическими крыльями. “Мы довольно рано решили сделать крыло эллиптическим, – написал впоследствии Шенстоун. – С точки зрения аэродинамики оно лучше всего подходило для наших целей, поскольку индуктивное сопротивление… при использовании такой формы оказывалось минимальным; эллипс был идеальной формой, совершенной в теории”[127].
В конце концов совершенную в теории форму все же пришлось доработать. В декабре 1934 года мастера Supermarine приступили к сборке экспериментального образца, и итоговым эллипсом, по словам Шенстоуна, стала “просто форма, позволившая сделать крыло как можно более плоским и при этом оставить внутри достаточно места для необходимых несущих конструкций и всего, что [инженерам] хотелось туда поместить”. И “получилось симпатично”, добавил Шенстоун.
Чтобы выполнить техническое задание, план крыла пришлось составить из нескольких кривых. Их совместили друг с другом так, чтобы показатели их крутизны в каждой точке пересечения были идентичны, что позволило сделать крылья гладкими и аэродинамическими. Неясно, в какой степени итоговая конструкция была основана на расчетах Шенстоуна, а скольким мы обязаны мастерству чертежников Supermarine, которые, как правило, работали в мезонине, расположенном над производственными цехами. Но эту работу, несомненно, можно было произвести с помощью математического анализа, если хорошо его освоить, а статья, опубликованная Шенстоуном в соавторстве с Хаулендом в 1936 году, показывает, что Шенстоун освоил его прекрасно. Она называется “Обратный метод конструирования сужающихся и закрученных крыльев”, и в ней на языке сложного математического анализа описывается, как изменение формы крыльев сказывается на летных качествах аппарата[128].
К несчастью, эта статья стала последней совместной работой Шенстоуна и Хауленда. В тот же год Хауленд умер, так и не узнав, какой важный вклад в историю он внес, обучив Шенстоуна математическому анализу. “Спитфайр” оказался настоящим триумфом, и его хвалили абсолютно все. Летавшие на нем летчики называли его “идеальной летающей машиной” и “чем-то из другого мира”. Впрочем, не стоит, пожалуй, удивляться, что британцам нравилось летать на “Спитфайре”. Удивительнее то, что и немецкие летчики восхищались его маневренностью. Когда битва за Британию подошла к кульминации, фельдмаршал Герман Геринг спросил, чем он может обеспечить немецкие истребительные эскадрильи, базировавшиеся во Франции, чтобы сломить сопротивление британцев. “Я бы не отказался от звена «Спитфайров»”, – заявил группенкоммандер Адольф Галланд[129]. Хайнц Кноке, еще один летчик, сражавшийся со “Спитфайрами” в битве за Британию, примерно так же оценивал преимущество противника. “Эти поганцы чертовски резко разворачиваются, их как будто бы и вовсе не подбить”, – писал он в мемуарах[130].
Эллиптическая в плане форма крыла “Спитфайра”. Arpingstone, изображение из открытого источника, via Wikimedia Commons
Битва за Британию – первое значительное военное поражение Гитлера – изменила исход Второй мировой войны. Ральф Ингерсолл сообщил, что “с тех пор поведение люфтваффе над Англией изменилось. Его боевой дух, несомненно, сломлен, а Королевские ВВС с каждой новой неделей становятся все сильнее”. Впервые появилась надежда на то, что Гитлера можно одолеть, и это подтолкнуло американцев вступить в конфликт. Такова – наряду с чудесами в городском планировании, финансовой сфере и здравоохранении – сила математического анализа.
Студентам математический анализ всегда казался переходным этапом от базовой математики к продвинутой. Почему-то все, что мы изучаем до него, усвоить относительно несложно, но если математический анализ окажется вам не по зубам, велика вероятность, что дальше вы уже не продвинетесь. Но даже если вас сломил математический анализ, не печальтесь. Как мы увидели, положить математику перемен на обе лопатки удалось лишь величайшим ученым. Впрочем, достигнув этого, мы уже не оглядывались назад. Математический анализ стал универсальным инструментом математики и среди прочего помогает решать задачи в сферах медицины, военного дела, финансов и архитектуры. Рынок деривативов, “Спитфайр”, тройная терапия ВИЧ и Бруклинский мост – вот впечатляющее наследие дисциплины, которая поначалу была не более чем несерьезной игрой с математикой бесконечного.
В следующей главе речь пойдет об инструменте совершенно иного происхождения. Джон Непер специально изобрел логарифм, чтобы помочь астрономам вычислять суммы. Вышло так, что диапазон применения этого инструмента, как и математического анализа бесконечного, оказался безграничным.
Глава 5. Логарифмы. История науки
Изобретение шотландского лэрда, логарифм, – не более чем инструмент для превращения умножения в сложение, а деления – в вычитание. Но этой простотой и объясняется его важнейшая роль в развитии человечества. Он позволил нам безошибочно рассчитывать орбиты небесных тел и таким образом закрепил Солнце на новом месте в центре Солнечной системы. Преобразованный во множество механических вычислительных инструментов, он веками питал науку и инженерное дело, в том числе при разработке и создании атомной бомбы. Он также познакомил нас с загадочным иррациональным числом e, которое лежит в основе целого ряда природных процессов. А вывернутый наизнанку, он описывает прекрасно знакомое нам экспоненциальное распространение инфекции в разгар вирусной эпидемии.
В 1601 году Иоганн Кеплер, человек, который изобрел интегрирование, чтобы сэкономить деньги на своей свадьбе, опубликовал расчеты, позволившие ему построить орбиту Марса. На них он потратил четыре года. Пятнадцать лет спустя он узнал о математической инновации, которая существенно сэкономила бы ему время.
“Один шотландский барон, имя которого вылетело у меня из головы, – писал он другу, – предложил чудесный способ приводить все необходимые [операции] умножения и деления к простым [операциям] сложения и вычитания”. Похоже, Кеплер пришел в восторг от возможности упростить работу в будущем, и его наставнику Михаэлю Мёстлину даже пришлось его осадить. Кеплер жаловался, что коллеги сказали ему, что “негоже профессору математики по-детски радоваться сокращению расчетов”[131].
Попробуйте сказать такое несметному множеству людей, которые в последующие триста пятьдесят лет не могли бы работать без этого шотландского изобретения. Оно называлось логарифмом и, как верно отметил Кеплер, позволяло манипулировать числами, упрощая сложные расчеты. Когда логарифмы перенесли на деревянные планки – логарифмические линейки, – они на века стали движущей силой науки и инженерии. Счетная линейка способствовала наступлению эпохи Просвещения, промышленной революции, атомного века и космической гонки. Если хотите составить представление о том, насколько важную роль играет эта линейка и как давно используется, знайте: логарифмической линейкой пользовался Исаак Ньютон, с ее помощью был сконструирован первый паровой двигатель, ученые применяли ее при испытаниях