Шрифт:
Интервал:
Закладка:
Но верно ли это рассуждение? Ведь углекислый газ, как известно, хорошо растворяется в воде. Может быть, он весь «уйдет в воду»? Однако процесс растворения этого газа очень медленный. Это показали специальные опыты: чистая вода в перевернутую банку, наполненную СО2, за час почти не поднимается. Эксперимент же со свечой продолжается менее минуты, поэтому даже при условии полного израсходования кислорода вода должна войти в банку всего на 0,21 – 0,1 = 0,07 ее объема (около 7 %).
Но и это не все. Оказывается, свеча «сжигает» в банке далеко не весь кислород, а лишь малую часть его. Анализ воздуха, в котором погасла свеча, показал, что в нем все еще содержится 16 % кислорода (интересно, что примерно до такого же уровня снижается содержание кислорода в нормальном выдохе человека). Значит, вода практически вовсе не должна заходить в банку! Опыт, однако, показывает, что это не так. Как же его объяснить?
Самое простое предположение: горящая свеча нагревает воздух, его объем увеличивается, и часть воздуха выходит из банки. После охлаждения воздуха в банке (это происходит достаточно быстро) давление в ней понижается, и в банку под действием внешнего атмосферного давления заходит вода. В соответствии с законом идеальных газов (а воздух в первом приближении можно считать идеальным газом), чтобы объем воздуха увеличился на 1/5, его температура (абсолютная) также должна увеличиться на 1/5, т. е. повыситься с 293 К (20 °С) до 1,2 · 293 = 352 К (около 80 °С). Не так уж много! Нагрев воздуха пламенем свечи на 60° вполне возможен. Осталось только проверить экспериментально, выходит ли воздух из банки во время опыта.
Первые эксперименты, однако, это предположение как будто не подтвердили. Так, в серии опытов, проведенных с широкогорлой банкой объемом 0,45 л, не было заметно никаких признаков «выбулькивания» воздуха из-под края банки. Другое неожиданное наблюдение: вода в банку, пока горела свеча, почти не заходила.
И лишь после того, как свеча гасла, уровень воды в перевернутой банке быстро поднимался. Как это объяснить?
Можно было предположить, что, пока свеча горит, воздух в банке нагревается, но при этом увеличивается не его объем, а давление, что и препятствует засасыванию воды. После прекращения горения воздух в банке остывает, его давление падает, и вода поднимается вверх. Однако это объяснение не годится. Во-первых, вода – не тяжелая ртуть, которая не дала бы воздуху выходить из банки при небольшом увеличении давления. (Ртутный затвор использовали когда-то все физики и химики, изучавшие газы.) Действительно, вода в 13,6 раза легче ртути, а высота водяного затвора между краем банки и уровнем воды в тарелке мала. Поэтому даже небольшое повышение давления неизбежно вызвало бы «пробулькивание» воздуха через затвор.
Еще серьезнее второе возражение. Даже если уровень воды в тарелке был бы бо́льшим и вода не выпускала бы из банки нагретый воздух, находящийся под повышенным давлением, то после остывания воздуха в банке и его температура, и давление вернулись бы к исходным значениям. Так что не было бы никаких причин для воздуха заходить в банку.
Загадку удалось разрешить, только изменив небольшую деталь в ходе эксперимента. Обычно банку «надевают» на свечу сверху. Так, может быть, в этом и кроется причина странного поведения воздуха в банке? Горящая свеча создает восходящий поток нагретого воздуха, и, когда банка движется сверху, горячий воздух вытесняет из банки более холодный еще до того, как край банки коснется воды. После этого температура воздуха в банке, пока свеча горит, уже мало изменяется, вот воздух и не выходит из нее (а также не заходит внутрь). А после прекращения горения и остывания горячего воздуха в банке давление в ней заметно понижается, и внешнее атмосферное давление загоняет в банку часть воды.
Чтобы проверить это предположение, в нескольких опытах банку «надевали» на свечу не сверху, а сбоку, почти касаясь краем банки пламени, после чего быстрым движением вниз ставили банку на дно тарелки. И сразу же из-под края банки начинали бурно выходить пузырьки воздуха! Естественно, после прекращения горения свечи вода засасывалась внутрь – примерно до того же уровня, что и в предыдущих опытах.
Так что данный опыт со свечой никак не может иллюстрировать состав воздуха. Зато он еще раз подтверждает мудрое высказывание великого физика, вынесенное в эпиграф.
Рассмотрим еще одно ошибочное объяснение эксперимента, в котором тоже происходит нагрев газов. Это объяснение проникло и в популярные статьи по химии, и даже в вузовские учебники. Так, в ряде зарубежных учебников по общей химии описывается красивый эксперимент, суть которого мы проиллюстрируем цитатой из учебника Ноэла Уэйта «Химическая кинетика». «Метод релаксации. Метод Эйгена, за который автор был удостоен в 1967 г. Нобелевской премии по химии, называют релаксационным методом. Реагирующая система достигает состояния равновесия при определенных условиях. Эти условия (температура, давление, электрическое поле) затем быстро нарушают – быстрее, чем смещается равновесие. Система снова приходит в равновесие, но теперь уже при новых условиях; это называют „релаксировать к новому положению равновесия”. Пока происходит релаксация, следят за изменение какого-то свойства системы…
Эксперимент, демонстрирующий явление релаксации.
В некоторых случаях состояние равновесия устанавливается настолько медленно в новых условиях, что за изменением концентрации можно проследить с помощью обычной лабораторной техники и наблюдать тем самым явление релаксации.
В качестве примера рассмотрим переход диоксида азота (темно-бурый газ) в димер (бесцветный газ):
Наполните стеклянный газовый шприц примерно 80 см3 газа. Быстро нажмите поршень шприца и сожмите газ до 50–60 см3. Убедитесь, что окраска газа изменилась. Сначала произойдет быстрое потемнение газа, так как концентрация NО2 возрастет, но затем наступит медленное посветление, поскольку высокое давление способствует образованию N2О4, и равновесие будет достигнуто при новых внешних условиях».
В ряде учебников аналогичное описание приводится, чтобы проиллюстрировать принцип Ле Шателье: при повышении давления газа равновесие смещается в сторону уменьшения числа молекул, в данном случае – в сторону бесцветного димера N2О4. При этом текст сопровождается тремя цветными фотографиями. На них видно, как сразу после сжатия желтовато-бурая вначале смесь становится темно-бурой, а на третьей фотографии, сделанной через несколько минут, газовая смесь в шприце заметно светлеет.
Иногда добавляют, что поршень нужно нажимать как можно быстрее, чтобы равновесие за это время не успело сдвинуться.
На первый взгляд такое объяснение выглядит очень убедительно. Однако количественное рассмотрение процессов в шприце полностью опровергает все выводы. Дело в том, что указанное равновесие между диоксидом азота NО2 и его димером (тетраоксидом азота) N2О4 устанавливается чрезвычайно быстро: за миллионные доли секунды! Поэтому невозможно сжать газ в шприце быстрее, чем это равновесие установится. Даже если двигать поршень в стальном «шприце» с помощью взрыва, равновесие, скорее всего, успевало бы установиться по мере движения поршня из-за его инерционности. Как же еще можно объяснить наблюдаемое в этом эксперименте явление? Конечно, уменьшение объема и соответствующее повышение концентрации газов приводит к усилению окраски. Но не это главная причина. Каждый, кто накачивал ручным насосом велосипедную камеру, знает, что насос (особенно алюминиевый) сильно нагревается. Трение поршня о трубку насоса здесь ни при чем – в этом легко убедиться, сделав несколько холостых качаний, когда воздух в насосе не сжимается. Нагрев происходит в результате так называемого адиабатического сжатия – когда теплота не успевает рассеяться в окружающем пространстве. Значит, и при сжимании смеси оксидов азота она должна нагреваться. А при нагревании равновесие в этой смеси сильно сдвигается в строну диоксида.