litbaza книги онлайнДомашняяАналитическая культура. От сбора данных до бизнес-результатов - Карл Андерсон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 39 40 41 42 43 44 ... 88
Перейти на страницу:

Ранее в качестве примера KPI я упоминал «удвоить число активных пользователей к концу года». Это тот случай, когда точные определения чрезвычайно важны.

Понятие «активный пользователь» можно трактовать довольно широко. В онлайновом игровом сообществе это определение может относиться к пользователям, которые просто зарегистрировались за последние 30 дней, или сыграли определенное количество игр, или потратили на игры определенное количество часов. Это определение нужно недвусмысленно уточнить в момент, когда устанавливаются показатели.

Итак, какие KPI можно отнести к хорошим, а какие — к плохим? Мария Микаллеф[107] приводит отличные примеры.

Вот хорошие цели для KPI.

• «Мы сократим количество недостающих контейнеров для бытовых отходов на 5 % в следующем году».

• «Мы увеличим число наших клиентов из Италии на 20 % к концу 2011 года».

В каждой из этих целей содержатся конкретные числовые показатели (при условии, что концепции «недостающих» и «клиентов» недвусмысленны или четко определены), они измеряемы и ограниченны во времени. Как насчет плохих целей?

Приведем плохие цели для KPI.

• «Мы стремимся стать лучшей транспортной компанией в регионе».

• «Мы улучшим нашу работу с жалобами клиентов».

• «Мы ответим на 75 % всех жалоб в течение пяти дней».

Давайте проанализируем эти цели.

В первом случае вопрос очевиден: что значит «лучшей»?

Во втором случае вопрос тоже напрашивается сам собой: как «улучшим»?

А вот третья цель особенно интересна. «Ответим на 75 % жалоб» — это весьма конкретно. «В течение пяти дней» — тоже ясно и с ограничением по времени. Фактически, если предположить, что эта цель достижима, то она соответствует всем пяти критериям SMART. Что же тогда не так?

Проблема в оставшихся 25 % жалоб. Как быть с ними? Как говорит Мария Микаллеф, «это плохая цель, если на обработку оставшихся 25 % жалоб уйдет три месяца». Одна из задач, которую вы должны держать в голове при разработке показателей, — то, что ваши сотрудники не должны осознанно или бессознательно пользоваться подобными «лазейками» в формулировках, чтобы формально выполнять поставленные перед ними задачи, но фактически не способствовать достижению стратегических целей компании[108]. В данном случае негативных отзывов от тех 25 % клиентов, на чьи жалобы не отреагируют в течение пяти дней, будет достаточно, чтобы уничтожить репутацию вашей компании.

В этих двух главах мы обсудили ключевые показатели эффективности, которые определяют, чего стремится достигнуть компания и на что обращать внимание для разработки качественных диагностических и операционных показателей (какие аспекты компания собирается отслеживать и оптимизировать). Кроме того, мы поговорили о видах анализа, которые можно применять при работе с этими данными. Следующий шаг в аналитической цепочке ценности заключается в «упаковке» сделанных выводов и рекомендаций, чтобы представить их коллегам, руководству и тем людям, от которых зависит принятие решений. То есть вам необходимо рассказать историю на основе этих данных. Это тема следующей главы.

Глава 7. Сторителлинг на основе данных

Когда вам удается удачно визуализировать свою мысль, собеседник моментально ее ухватывает, и диалог продолжается. Вы получаете ответную реакцию. Это повышает продуктивность. Это гораздо эффективнее, чем разговор по телефону или письмо по электронной почте. Вы сразу же доносите свою идею до многих людей.

Офер Менделевитч[109]
* * *

В предыдущих двух главах мы обсудили виды анализа, от описательного до каузального, а также вопросы разработки показателей, включая особенно важные — KPI. В этой главе мы продвинемся дальше по аналитической цепочке ценности — перейдем к обсуждению того, как «упаковывать» сделанные выводы и рекомендации и презентовать их руководству и другим заинтересованным лицам, чтобы это способствовало повышению качества дискуссии и процесса принятия решений на всех уровнях.

В этой главе приводится общий обзор процесса и целей передачи и распространения аналитических выводов в компании с управлением на основе данных: мы рассмотрим, почему и что может составлять аналитическую коммуникацию, но не будем останавливаться на том, как ее осуществлять. Я расскажу о подготовительном этапе, о чем вам стоит задуматься перед тем, как приступить к подготовке презентации или визуализации. Чтобы внести конкретику, я остановлюсь на инструменте, позволяющем подбирать графики и диаграммы, и на контрольном списке относительно визуализации данных. Надеюсь, они, а также ссылки на источники, скажут сами за себя. После этого нам останется кратко коснуться некоторых вопросов подготовки презентации, таких как общая структура и основное сообщение.

Сторителлинг

«Каждый набор, каждая база данных, каждая таблица способны рассказать целую историю», — уверен Стюарт Франкел, CEO компании Narrative Science. Работа специалиста по анализу данных заключается в том, чтобы увидеть эту историю или хотя бы историю, интересную для компании, сформулировать ее и донести до аудитории. Более того, аналитикам следует позаботиться о точности истории, которая должна быть подтверждена практикой. В противном случае люди придумают свою историю, опираясь на сомнительные данные. В книге Дэвенпорта и др. Analytics at Work (с. 138–139) приводится в качестве примера случай, когда один из руководителей больницы был уверен, что главный фактор, влияющий на удовлетворенность пациентов качеством обслуживания, — качество еды. Когда аналитики взялись проверить это утверждение, оказалось, что это был один из наименее значимых факторов в наборе из еще 30. Убеждение руководителя было очень далеко от реальности. Чем объяснялось это несоответствие? Руководитель поговорил с двумя пациентами, которые пожаловались на качество еды. Он сделал вывод на основе случайных эпизодов, в то время как выводы аналитиков строились на основе репрезентативной выборки данных и объективного статистического анализа.

1 ... 36 37 38 39 40 41 42 43 44 ... 88
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?