Шрифт:
Интервал:
Закладка:
Однако несмотря на согласованную картину атома, развитую в начале двадцатого века в Кэвендишской и других лабораториях, поведение составных частей атома было таково, что оно могло разрушить наиболее фундаментальные убеждения физиков. Из опытов Резерфорда следовала модель атома, состоящего из электронов, движущихся по орбитам вокруг центрального атомного ядра. Несмотря на простоту этой картины, она, к сожалению, имела один недостаток: она должна была быть ошибочной. Классическая теория электромагнетизма предсказывает, что когда электроны движутся по окружности, они должны излучать энергию за счет испускания фотонов (или, на классическом языке, излучения электромагнитных волн). Таким образом, фотоны уносят энергию, оставляя все меньше энергии электрону, который будет обращаться пе все меньшим окружностям, по спирали приближаясь к центру. На самом деле классическая теория электромагнетизма предсказывает, что атомы не могут быть стабильными и должны коллапсировать за время меньше одной наносекунды. Стабильные электронные орбиты в атоме были полной загадкой. Почему электроны не теряют энергию и не падают по спирали на атомное ядро?
Для объяснения орбит электронов в атоме потребовался радикальный отход от классического образа мышления. Доведение такой логики до неизбежного вывода выявило прорехи в классической физике, которые могли быть устранены только в результате развития квантовой механики. Нильс Бор сделал именно такое революционное предположение, расширив планковское понятие о квантовании и перенеся его на электроны. Это стало существенным компонентом старой квантовой механики.
Квантование электронов
Бор предположил, что электроны не могут двигаться ни по одной из старых орбит; электронная орбита должна иметь радиус, определяющийся предложенной Бором формулой. Бор сумел открыть эти орбиты благодаря удачной и остроумной гипотезе. Он предположил, что электроны должны вести себя так, как будто они являются волнами, откуда следует, что, обращаясь вокруг ядер, они колеблются вверх и вниз.
В общем случае некоторая волна совершает однократное колебание вверх и вниз при прохождении определенного пути; этот путь и называется длиной волны. С волной, бегущей по окружности, также связана длина волны. В этом случае длина волны определяет величину дуги, вдоль которой при обращении вокруг ядра волна проходит один раз вверх и вниз.
Электрон, вращающийся по орбите определенного радиуса, не может иметь произвольную длину волны. Он может иметь только такую длину волны, которая позволит ей совершить колебания вверх и вниз определенное число раз. Отсюда возникает правило для определения разрешенных длин волн: проходя по окружности, определяющей орбиту электрона, волна должна совершить целое[62] число колебаний (рис. 42).
Хотя предложение Бора было радикальным, а его смысл туманным, оно достигало своей цели: если принять такую гипотезу, она гарантирует стабильность орбит электрона. Оказываются разрешенными только определенные орбиты электронов. Промежуточные орбиты запрещены. В отсутствие внешнего посредника, который мог бы заставить электрон перепрыгнуть с одной орбиты на другую, у электрона не было других возможностей приблизиться к ядру.
Можно представить себе атом Бора с фиксированными электронными орбитами как многоэтажное здание, в котором можно находиться только на четных этажах — втором, четвертом, шестом и т. д. Так как вы никогда не сможете ступить ногой на промежуточные этажи, например, третий или пятый, вы будете вечно приклеены к тому четному этажу, на котором находитесь. У вас нет возможности попасть на самый нижний этаж и выйти наружу.
Волны Бора представляли собой вдохновенную гипотезу. Бор не утверждал, что понимает смысл этих волн; он выдвинул свою гипотезу просто для того, чтобы получить стабильные электронные орбиты. Тем не менее количественная природа гипотезы Бора позволяла осуществить ее проверку. В частности, гипотеза Бора правильно предсказывала спектральные линии атомов. Спектральные линии определяют частоту света, который испускает или поглощает неионизированный атом, т. е. нейтральный атом со всеми своими электронами и полным зарядом, равным нулю[63]. Физики заметили, что вместо того, чтобы показывать непрерывное распределение (в которое дают вклад все длины волн света), спектры демонстрировали напоминающую штрих-код структуру из отдельных полос. Никто не мог понять причину этого. Более того, никто не мог объяснить точные значения наблюдавшихся частот.
Опираясь на свою гипотезу квантования, Бор сумел объяснить, почему фотоны испускались или поглощались только с наблюдавшимися частотами. Хотя у изолированного атома электронные орбиты были стабильны, они могли изменяться, если фотон с нужной частотой и, следовательно, согласно Планку, с нужной энергией, передавал или отбирал энергию.
Используя рассуждения, основанные на классической физике, Бор вычислил энергию электронов, подчинявшихся его гипотезе квантования. Зная эти энергии, он предсказал энергии, а следовательно, и частоты фотонов, которые испускает или поглощает атом водорода, обладающий одним электроном. Предсказания Бора оказались правильными, и поэтому его гипотеза квантования стала весьма правдоподобной. Именно это убедило ученых, среди которых был и Эйнштейн, что Бор должен быть прав.
Квантованные световые пакеты, которые могут испускаться или поглощаться и тем самым изменять орбиты электронов, можно сравнить с длинами веревок, протянутых между окнами многоэтажного здания в нашем предыдущем примере. Если каждый кусок веревки имеет точно ту длину, которая нужна, чтобы перебраться с вашего этажа на любой другой четный этаж, и если открыты только окна на четных этажах, то веревка позволит меняться этажами, но только с четными номерами. Аналогично, длины волн спектральных линий могут принимать только определенные значения, равные разностям энергий электронов, занимающих дозволенные орбиты.
Несмотря на то что Бор не дал объяснения своему условию квантования, он оказался безусловно прав. Были измерены длины волн многих спектральных линий, и всех их можно было воспроизвести с помощью гипотезы Бора. Если такое согласие считать случайным совпадением, это можно рассматривать как чудо. В конце концов квантовая механика подтвердила гипотезу Бора.
Отход от частиц
Как бы ни были важны правила квантования, квантово-механическая связь между частицами и волнами стала укрепляться только после исследований французского физика герцога Луи де Бройля, австрийца Эрвина Шрёдингера и немца по происхождению Макса Борна.
Первым ключевым шагом от случайного блуждания по тропам старой квантовой теории к выходу на дорогу истинной квантово-механической теории было замечательное предложение де Бройля перевернуть гипотезу квантования Планка с ног на голову. В то время как Планк связывал кванты с волнами излучения, де Бройль, как и Бор, постулировал, что частицы также ведут себя как волны. Гипотеза де Бройля состояла в том, что частицы должны проявлять волновые свойства, и эти волны определяются импульсом частицы. (При малых скоростях импульс частицы равен произведению ее массы и скорости. При всех скоростях импульс указывает, каким образом нечто реагирует на приложенную силу. Хотя при релятивистских скоростях импульс является более сложной функцией массы и скорости, обобщение импульса, применимое при больших скоростях, также указывает, каким образом нечто реагирует на действие силы при релятивистских скоростях.)