litbaza книги онлайнДомашняяСтратегии решения математических задач. Различные подходы к типовым задачам - Альфред Позаментье

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 33 34 35 36 37 38 39 40 41 42
Перейти на страницу:

Обратите внимание на то, что числа 3 и 4 тоже работают, так как 32 = 9, а 42 = 16. При размещении рядом друг с другом эти квадраты дают число 169, которое является квадратом простого числа. Однако в условиях задачи говорится о четырехзначном числе, так что этот ответ исключается.

Задача 10.8

Лайза получила на неделю задание решить 26 арифметических задач. Чтобы заинтересовать ее, отец обещал выдавать ей по 8 центов за правильно решенные задачи и вычитать по 5 центов за неправильно решенные. После выполнения задания Лайза обнаружила, что отец не должен ей ничего, но и она ничего не должна. Сколько задач Лайза решила правильно?

Обычный подход

Эту задачу позволяет решить обычный алгебраический подход.

Пусть x обозначает количество правильно решенных задач, а y — количество неправильно решенных задач.

Тогда:

8x — 5y = 0;

x + y = 26.

Из первого уравнения получаем, что 8x = 5y иСтратегии решения математических задач. Различные подходы к типовым задачам

Подстановка значения x во второе уравнение дает:

Стратегии решения математических задач. Различные подходы к типовым задачам

Лайза решила правильно 10 задач и неправильно 16 задач.

Образцовое решение

Те, кто не умеет решать системы из двух уравнений с двумя неизвестными, могут попробовать найти ответ с помощью стратегии обоснованного предположения и проверки. Результаты лучше представлять в табличной форме. Начнем с середины — 13 правильных решений и 13 неправильных.

Стратегии решения математических задач. Различные подходы к типовым задачам

Лайза решила правильно 10 задач и неправильно 16 задач.

Табличное представление результатов делает ответ очевидным. Обратите внимание на то, что предположения не выдвигаются наобум. Мы начинаем в середине и движемся вверх или вниз по одному предположению за раз. Поскольку первое предположение значительно выше искомого ответа, мы уменьшаем количество правильных решений на 1 и увеличиваем количество неправильных на 1 за раз, уменьшая сумму на 13 центов.

Задача 10.9

В США существуют монеты следующего достоинства: 1 цент, 5 центов, 10 центов, 25 центов, 50 центов (есть даже монета $1). Какое наименьшее количество монет необходимо, чтобы составить любую сумму от 1 цента до $1?

Обычный подход

Один из подходов — это взять какое-то количество монет каждого достоинства и попытаться найти наименьшее их число, которое позволяет составить любую сумму от 1 цента до $1. Другими словами, реально выполнить необходимые действия. Некоторые пытаются пойти обратным путем и начинают с двух 50-центовых монет. Ни тот ни другой подход нельзя назвать рациональным.

Образцовое решение

Воспользуемся стратегией обоснованного предположения и проверки. Очевидно, что нам понадобятся четыре одноцентовых монеты для получения сумм величиной до 4 центов. Добавив одну пятицентовую монету, мы можем получить любую сумму от 1 цента до 9 центов. Добавление 10-центовой монеты позволяет составить суммы величиной до 19 центов. Еще одна 10-центовая монета делает доступными суммы до 29 центов. Одна 25-центовая монета позволяет составить все суммы до 54 центов. Наконец, одна 50-центовая монета расширяет диапазон доступных сумм до $1. Нам необходимы девять монет следующих достоинств:

1 цент, 1 цент, 1 цент, 1 цент, 5 центов, 10 центов, 10 центов, 25 центов, 50 центов.

Для проверки полученного ответа можно выбрать наугад несколько сумм и попробовать составить их с помощью наших девяти монет. Например, чтобы составить сумму 73 цента, нам потребуются монеты 50 центов, 10 центов, 10 центов и три по 1 центу.

Задача 10.10

Древние египтяне были выдающимися математиками. Пирамиды и многие построенные ими храмы наглядно подтверждают это. Они одними из первых стали пользоваться дробями и представляли их в виде суммы долей единицы. (Доля единицы — это дробь, в числителе которой находится 1.) Так,

Стратегии решения математических задач. Различные подходы к типовым задачам

Как древние египтяне записали бы дробь?

Обычный подход

Традиционно выписывают различные доли единицы, находят их общий знаменатель и суммируют, чтобы подобрать подходящий набор долей. Ответ практически невозможно получить, если действовать беспорядочно. Количество возможностей здесь почти бесконечно.

Образцовое решение

Простое тыканье наугад редко дает результат. Обоснованное предположение и проверку можно использовать организованно. Проанализируем приведенные выше примеры.

Прежде всего, обратите внимание на то, что все знаменатели долей единицы являются множителями исходного знаменателя. В первом случае знаменатели 2 и 3 являются множителями исходного знаменателя 6. Значит у искомых долей единицы в знаменателе должны стоять множители числа 28. Кроме того заметьте, что доли единицы идут в порядке убывания — впереди стоит наибольшая доля, за ней идет следующая по величине и т. д. Очевидно, что наибольшая доля единицы этоСтратегии решения математических задач. Различные подходы к типовым задачам Если в качестве возможных знаменателей использовать множители числа 28, то следующей величине долей единицы будетСтратегии решения математических задач. Различные подходы к типовым задачам При сложении этих долей мы получим:Стратегии решения математических задач. Различные подходы к типовым задачам Нам, однако, нужно ещеСтратегии решения математических задач. Различные подходы к типовым задачам чтобы получить в суммеСтратегии решения математических задач. Различные подходы к типовым задачам Таким образом, искомая сумма единичных долей равна:Стратегии решения математических задач. Различные подходы к типовым задачам

1 ... 33 34 35 36 37 38 39 40 41 42
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?