litbaza книги онлайнДомашняяАлекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 38 39 40 41 42 43 44 45 46 ... 103
Перейти на страницу:

— На мини-ленте. Причем требовалось звонить чуваку и просить его, — добавляет Дэвид.

— И говорить: пленка номер такой-то и такой-то, — продолжает Грегори. — А иногда, если появлялось что-то поважнее, твои пленки вытаскивали в самый разгар вычисления. — Он закатил глаза, как будто собираясь всплеснуть руками.

Несмотря на препятствия, Чудновски не прекращали усилий и вышли за предел миллиарда цифр. Затем Канада снова вырвался вперед — ненадолго, пока Чудновски не вернули себе лидерство, вычислив 1,13 миллиардов. После чего Дэвид и Грегори решили, что если они намерены и дальше всерьез заниматься вычислением π, то им нужна своя собственная вычислительная машина.

Суперкомпьютер Чудновски жил в одной из комнат в квартире Грегори. Вся штука была сделана из процессоров, соединенных кабелями, и стоила, по оценке братьев, около 70 000 долларов. Это было разве что не задаром, если сравнить с миллионами долларов, в которые обошлась бы покупка вычислительной машины сравнимой мощности. Однако эта машина серьезно осложнила их жизнь. Компьютер, который они назвали «m-нуль», должен был все время оставаться включенным, случайное выключение могло бы все испортить, так что в комнате пришлось поставить 25 вентиляторов для охлаждения. Братья следили за тем, чтобы не включать в квартире слишком много света, дабы не перегружать электрическую сеть.

В 1991 году домашний питомец Дэвида и Грегори вычислил π с точностью более двух миллиардов знаков. Затем они переключились на другие задачи.

К 1995 году Канада снова оказался впереди, и в 2002 году он достиг 1,2 триллиона цифр; этот рекорд продержался лишь до 2008 года, когда его соотечественники из Университета Цукуба получили 2,6 триллиона знаков. В декабре 2009 года француз Фабрис Белляр объявил о новом рекорде, поставленном с использованием формулы Чудновски: почти 2,7 триллиона знаков. Вычисление на его настольном PC заняло 131 день.

Если записать триллион цифр мелким шрифтом, то они покроют расстояние от Земли до Солнца. Если писать по 5000 цифр на каждой странице (для чего потребуется очень мелкий шрифт) и сложить их стопкой друг на друга, то число π достигнет небес, поднявшись в высоту на 10 километров. В чем же смысл вычисления числа π с таким абсурдно большим числом знаков? Одна причина — очень человеческая: рекорды существуют для того, чтобы их побивать.

Но есть и другая, более важная причина. Нахождение новых цифр в числе π — идеальный тест для проверки того, насколько эффективно считает компьютер. «Уточнение известного значения числа π само по себе не является для меня каким-то специальным пристрастием или хобби, — заметил Канада. — Но меня всерьез интересует, как увеличить скорость вычислений». Вычисление числа π стало важным элементом при проверке качества суперкомпьютеров, потому что это «очень процессороемкая работа, которая требует большого объема основной памяти, оперирует с огромными числами, но при этом легко проверить ответ. Можно использовать и другие математические константы, например, квадратный корень из двух, число e[31], или число гамма — но π из них самое эффективное».

В истории жизни числа π наблюдается занятная цикличность. Это простейшее и наиболее древнее отношение (длины окружности к диаметру) в математике было изобретено заново в качестве важнейшего инструмента, используемого на самом переднем крае компьютерных технологий.

На самом деле интерес братьев Чудновски к числу π был связан главным образом с их желанием строить суперкомпьютеры — страстью, которая с тех пор и не думала угасать. В настоящее время братья работают над чипом, который, по их утверждению, станет самым быстрым в мире, он будет иметь всего 2,7 сантиметра в ширину, и при этом в него войдут целых 160 000 меньших по размеру чипов и 1,75 километра проводов.

* * *

В написанном Карлом Саганом бестселлере «Контакт» инопланетянин предупреждает женщину на Земле, что после определенного количества цифр случайность в числе π исчезнет и там появится сообщение, записанное нулями и единицами. Это послание появится после десятичного разряда с номером 1020 — что представляет собой единицу с двадцатью нулями. Поскольку к настоящему моменту мы добрались «только» то 2,7 триллиона разрядов (число 27 с и нулями), то надо еще немного постараться, чтобы проверить, действительно ли там есть что-то в этом роде. На самом деле придется продвинуться даже еще чуть дальше, потому что послание, по-видимому, записано в 11-ричной системе.

Мысль о том, что в числе π есть закономерность, способна любому вскружить голову. Математики стали выискивать какие-либо указания на порядок в десятичных разложениях числа π, как только они появились. Иррациональность π означает, что цифры следуют друг за другом без какого-либо повторяющегося порядка, но это не исключает возможности появления упорядоченных кусков — таких, как послание, записанное нулями и единицами. До сих пор, однако, никто не нашел ничего важного. Хотя, надо сказать, у π есть свои причуды. Первый 0 появляется только на 32-м месте, что намного позже, чем можно было бы ожидать, коль скоро цифры распределены случайно. Первый раз, когда какая-либо цифра повторяется шесть раз подряд, наступает на 762-м десятичном знаке (и это 999 999). Вероятность столь раннего повторения шести девяток — если их появление случайно — меньше 0,1 процента. Эта последовательность известна как точка Фейнмана — выдающийся физик Ричард Фейнман однажды заметил, что хотел бы запомнить число π именно до этого места и закончить словами «девять, девять, девять, девять, девять, девять и так далее». Следующий раз, когда последовательно выпадают шесть одинаковых цифр, случается на 193 034-м месте, и цифры эти — снова девятки. Не послание ли это извне, и если да — то о чем оно?

Число считается нормальным, если каждая из его цифр от 0 до 9 появляется в его десятичном разложении с равной частотой. Нормально ли π? Канада изучил первые 200 миллиардов цифр числа π и нашел, что цифры появляются со следующими частотами:

0 20 000 030 841 1 19 999 914 711 2 20 000 136 978 3 20 000 069 393 4 19 999 921 691 5 19 999 917 053 6 19 999 881 515 7 19 999 967 594 8 20 000 291 044 9 19 999 869 180

Только цифра 8 кажется несколько избыточной, однако отличие статистически несущественно. Казалось бы, число π нормально, но никто не смог этого доказать. И никто не смог доказать, что такое доказательство невозможно. Поэтому есть шанс, что π не нормально. Быть может, вслед за 1020 знаками и правда идут только 0 и 1?

1 ... 38 39 40 41 42 43 44 45 46 ... 103
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?