litbaza книги онлайнРазная литератураПринцип эксперимента. 12 главных открытий физики элементарных частиц - Сьюзи Шихи

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 40 41 42 43 44 45 46 47 48 ... 95
Перейти на страницу:
фокусируя его, но при этом не надо беспокоиться о синхронизации колебаний напряжения. Эта идея фактически схожа с мыслью, которую молодой Эрнест Уолтон предложил Резерфорду в конце 1920-х годов. Попытки Уолтона разработать такой аппарат тогда не увенчались успехом, что стало одной из причин, по которой он в конечном итоге создал ускоритель с Джоном Кокрофтом[159]. Хотя его первые эксперименты потерпели неудачу, Уолтон внес ключевой вклад в теорию такой машины, и в том числе выяснил, как заставить частицы оставаться на желаемой орбите. На самом деле добиться этого куда сложнее, чем вы думаете.

В циклическом ускорителе цель состоит в том, чтобы частицы идеально вращались по кольцеобразной траектории, проходящей внутри круглой трубки, известной как «пончик»[160]. При работе с реальным пучком частиц мы должны думать о них не по отдельности, а как о совокупности независимых частиц, каждая из которых никогда не находится идеально посередине трубки. Вместо этого каждая частица следует по своей собственной траектории, которая не совсем соответствует идеальной орбите. Уолтон справедливо опасался, что по мере ускорения частиц их нужно будет постоянно отталкивать обратно к центру трубки, чтобы они не отлетали и не терялись. Он произвел подробный расчет того, как это сделать, придав магнитному полю такую форму, чтобы оно уменьшалось с увеличением радиуса и искривлялось у внешнего края кольца. Такая установка, как он выяснил, фокусирует частицы и гарантирует, что они всегда возвращаются на идеальную орбиту[161].

К 1940 году первый работающий бетатрон был, наконец, создан Дональдом Керстом в Соединенных Штатах. Новая машина быстро стала многообещающей технологией для ускорения электронов примерно до 99,99 % скорости света. Теперь, когда электроны можно было ускорять, им быстро нашлось применение не только в науке, но и в реальном мире. В частности, появился рынок ускорителей частиц в медицине и промышленности. В 1944 году физик Херб Поллок возглавил команду исследовательской лаборатории General Electric (далее GE) в Скенектади, штат Нью-Йорк, для создания бетатрона, рассчитанного на энергию в 100 Мэ В. Ребристый железный фасад 130-тонной машины возвышался над головами физиков и был больше похож на линкор, чем на медицинское устройство, поперек него шла надпись General Electric. Зазор примерно на высоте головы создавал пространство для кольцеобразного вакуумного сосуда. Работая, машина издавала оглушительный жужжащий шум, поскольку мощные электрические токи циркулировали в катушках электромагнита, ускоряя пучки от нуля до 100 МэВ 60 раз в секунду.

Физик и инженер Уильям Кулидж, по совместительству директор исследовательской лаборатории GE, намеревался использовать бетатрон для создания высокоэнергетических рентгеновских лучей путем воздействия электронов с энергией 100 МэВ на мишень, что позволило бы ему получить рентгеновскую супертрубку, лучи которой могли бы проходить сквозь тело или промышленные объекты для получения изображений там, где рентгеновские лучи с более низкой энергией останавливались. Он надеялся, что бетатрон станет коммерческим устройством, после чего команда будет создавать все большие и большие машины по мере роста рынка. Но лучше всего было то, что ученые не видели предела энергии электронов, которой они могли достичь с помощью такого устройства.

Как только они привыкли управлять машиной, Джон Блюитт, физик из другой группы GE, узнал о теории, которая, казалось, представляла проблему. Советские ученые Дмитрий Иваненко и Исаак Померанчук указали в письме в журнал Physical Review, что существует проблема с ускорением электронов в циклической машине. Если вы примените принцип сохранения импульса к заряженной частице, движущейся по кругу, то обнаружите, что изгибание ее траектории должно вызывать излучение[162]. Блюитт повторил расчеты и понял, что русские правы.

Для бетатрона с энергией 100 МэВ эффект окажется небольшим. Потеря энергии составила бы всего 10 эВ за оборот, так что конечная энергия их машины составила бы 99, а не 100 Мэ В. Невелика потеря. Но расчеты предсказывали, что при каждом удвоении энергии электрона потери увеличатся в 16 раз. Если бы ученые хотели создать бетатроны большего размера, то по мере того, как частицы достигали бы более высоких энергий, испускалось бы огромное количество излучения. По словам Иваненко и Померанчука, будет потеряно так много энергии, что механизм ускорения просто перестанет справляться. Верхним пределом, по их словам, станет энергия частиц около 500 Мэ В. Если это так, то идея бетатрона вскоре устареет.

Некоторые ученые из команды GE скептически относились к идее существования такого эффекта. В конце концов, электроны все время движутся по проводам и не испускают излучения. Блюитт настоял на проведении теста в GE, чтобы проверить, верны ли прогнозы. В их распоряжении был бетатрон мощностью 100 МэВ, и Блюитт подсчитал, что орбита должна немного сместиться из-за радиационного эффекта.

Когда они включили аппарат и провели измерения, орбита действительно казалась немного отклоненной. Но, опять же, это сложная машина, и сдвиг орбиты мог произойти по целому ряду причин. Бесспорным доказательством может служить только само излучение. Они разместили вокруг машины оборудование для отслеживания радиации в радиочастотном спектре, но так ничего и не нашли.

Этот вопрос все еще оставался нерешенным в конце 1945 года, когда Эрнест Лоуренс нанес один из своих регулярных визитов в Скенектади и переключил внимание здешних исследователей на новую цель. На семинаре он представил идею, над которой работала его команда в Беркли. Вместо движущихся по спирали частиц в циклотроне Лоуренс предложил машину с пучком, ограниченным одной орбитой, где ускорение обеспечивалось бы радиочастотными электрическими полями, а магнитное поле возрастало бы во времени. Эту идею одновременно выдвинули сразу два ученых – коллега Лоуренса из Беркли Эд Макмиллан и Владимир Векслер в России. Они развили идею, которую несколькими годами ранее представил австралиец Марк Олифант[163], один из учеников Резерфорда. Эта новая концепция избавила бы от необходимости в гигантских магнитах для циклотронов и бетатронов, но в качестве компромисса выступал несколько более сложный принцип работы: поскольку скорость частиц меняется от орбиты к орбите, ускоряющая частота должна изменяться во времени, чтобы не отставать. Все должно быть идеально синхронизировано, а потому это устройство получило имя «синхротрон».

Физики GE внимательно слушали. У них уже был бетатрон, но они беспокоились, что технология достигнет верхнего предела энергии из-за потерь на излучение. Идея синхротрона казалась интересной, но как она решит проблему? Как синхротрон продолжит ускорять электроны до более высоких энергий, когда начнется излучение?

Макмиллан и Векслер решили эту проблему с помощью принципа фазовой стабильности, который основывался на синхронизации используемых радиочастотных полей для ускорения луча орбита за орбитой. Проще всего представить кучу заряженных частиц в циклическом ускорителе как группу серферов, дрейфующих

1 ... 40 41 42 43 44 45 46 47 48 ... 95
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?