Шрифт:
Интервал:
Закладка:
Trivers R. L., Hare Н. (1976). Haploidploidy and the evolution of the social insect. Science. 191(4224). 249–263.
Способностью определять время подъема, вероятно, обладают и десмоды:
Marimuthu G., Rajan S., Chandrashekaran М. К. (1981). Social entrainment of the circadian rhythm in the flight activity of the microchiropteran bat Hipposideros speoris. Behavioral Ecology and Sociobiology. 8(2). 147–150.
Белок дракулин:
Apitz-Castro R., Beguin S., Tablante A., Bartoli F., Holt J. C., Hemker H. C. (1995). Purification and partial characterization of draculin, the anticoagulant factor present in the saliva of vampire bats (Desmodus rotundus). Thrombosis and haemostasis. 73(01). 094–100.
Fernandez A. Z., Tablante A., Begum S., Hemker H. C., Apitz-Castro R. (1999). Draculin, the anticoagulant factor in vampire bat saliva, is a tight-binding, noncompetitive inhibitor of activated factor X. Biochimica et Biophysica Acta (BBA). Protein Structure and Molecular Enzymology. 1434(1). 135–142.
О возможности применения дракулина в медицинских целях:
Kakumanu R., Hodgson W. С., Ravi R., Alagon A., Harris R. J., Brust A., Alewood P. F., Kemp-Harper В. K., Fry B. G. (2019). Vampire Venom: Vasodilatory Mechanisms of Vampire Bat (Desmodus rotundus) Blood Feeding. Toxins. 11(1). 26.
Десмоды делятся добытой кровью:
Carter G. G., Wilkinson G. S. (2013). Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proceedings of the Royal Society B: Biological Sciences. 280(1753). 20122573.
Об эксперименте с летучими мышами:
Carter G. G., Wilkinson G. S., Page R. A. (2017). Food- sharing vampire bats are more nepotistic under conditions of perceived risk. Behavioral Ecology. 28(2). 565–569.
Распространение бешенства у больших кровососов:
Streicker D. G., Recuenco S., Valderrama W., Gomez Benavides J., Vargas I., Pacheco V., Condori Condori R. E., Montgomery J., Rupprecht С. E., Rohani P., Altizer S. (2012). Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proceedings of the Royal Society B: Biological Sciences. 279(1742). 3384–3392.
Глава 11. Гонка вооружений
Насекомые и летучие мыши:
Miller L. A., Surlykke А. (2001). How Some Insects Detect and Avoid Being Eaten by Bats: Tactics and Countertactics of Prey and Predator: Evolutionarily speaking, insects have responded to selective pressure from bats with new evasive mechanisms, and these very responses in turn put pressure on bats to «improve» their tactics. Bioscience. 51(7). 570–581.
Бабочки-медведицы, издающие ультразвуковые сигналы:
Corcoran A. J., Barber J. R., Conner W. E. (2009). Tiger moth jams bat sonar. Science. 325(5938). 325–327.
Corcoran A. J., Barber J. R., Hristov N. I., Conner W. E. (2011). How do tiger moths jam bat sonar? Journal of Experimental Biology. 214(14). 2416–2425.
Факты об ужасных листолазах и батрахотоксине упоминаются в многочисленных материалах в интернете, однако надежных научных источников оказалось немного. На эту тему ведется ряд исследований, а в сильном действии яда листолаза не приходится сомневаться. См. об этом:
Daly J. W., Myers С. W., Warnick J. Е., Albuquerque Е. X. (1980). Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates). Science. 208(4450). 1383–1385.
Myers С. W., Daly J. W., Malkin В. (1978). A dangerously toxic new frog (Phyllobates) used by Emberá Indians of western Colombia, with discussion of blowgun fabrication and dart poisoning. Bulletin of the AMNH. 161. Article 2.
Myers C. W., Daly J. W. (1976). Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bulletin of the AMNH. 157. Article 3.
Márquez R., Ramírez-Castañeda V., Amézquita A. (2019). Does batrachotoxin autoresistance coevolve with toxicity in Phyllobates poison-dart frogs? Evolution. 73(2). 390–400.
Существуют ужасные листолазы других цветов. Формирование окраски у этих ядовитых лягушек пока недостаточно изучено. Однако процесс выработки сигнальных цветов описан в ряде исследований:
Rojas В. (2017). Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biological Reviews. 92(2). 1059–1080.
Santos J. C., Coloma L. A., Cannatella D. C. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences. 100(22). 12792-12797.
Об эволюции лягушек:
Santos J. С., Coloma L. A., Summers K., Caldwell J. P., Ree R., Cannatella D. C. (2009). Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS biology. 7(3). e1000056.
О птенцах серой аулии:
Londoño G. A., García D. A., Sánchez Martínez М. А. (2014). Morphological and behavioral evidence of Batesian mimicry in nestlings of a lowland Amazonian bird. The American Naturalist. 185(1). 135–141.
О «роковых» светляках:
Branchini В. R., Behney С. E., Southworth T. L., Fontaine D. М., Gulick A. М., Vinyard D. J., Brudvig G. W. (2015). Experimental support for a single electron-transfer oxidation mechanism in firefly bioluminescence. Journal of the American Chemical Society. 137(24). 7592–7595.
О «синхронных» светляках:
Copeland J., Moiseff A. (1994). The occurrence of synchrony in the North American firefly Photinus carolinus (Coleoptera: Lampyridae). Journal of Insect Behavior. 8(3). 381–394.
О светляках в Грейт-Смоки-Маунтинс:
Lewis S. М., Faust L., De Cock R. (2012). The dark side of the light show: predators of fireflies in the Great Smoky Mountains. Psyche: A Journal of Entomology. 2012.634027.
О маскировке светляков:
Lloyd J. E. (1975). Aggressive mimicry in Photuris fireflies: signal repertoires by femmes fatales. Science. 187(4175). 452–453.
Глава 12. Паразиты-манипуляторы
О биологии кордицепса однобокого и паразитизме: Andersen S. В., Ferrari М., Evans Н. С., Elliot S. L., Boomsma J. J., Hughes D. P. (2012). Disease dynamics in a specialized parasite of ant societies. PloS one. 7(5), e36352.
О том, как кордицепс контролирует муравья: Fredericksen М. A., Zhang Y., Hazen М. L., Loreto R. G., Mangold С. A., Chen D. Z., Hughes D. P. (2017). Three- dimensional visualization and a deep-learning model reveal complex fungal parasite networks in behaviorally manipulated ants. Proceedings of the National Academy of Sciences. 114(47). 12590-12595.
Evans H. C., Elliot S. L., Hughes D. P. (2011). Ophiocordyceps unilateralis: A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests? Communicative & integrative biology. 4(5). 598–602.
О муравьях и паразитах в целом:
De Bekker С., Will I., Das В., Adams R. M. (2018). The ants (Hymenoptera: Formicidae) and their parasites: effects of parasitic manipulations and host responses on ant behavioral ecology. Myrmecological News, 28.
Planet Earth-film med Ophiocordyceps: BBC Planet Earth (2006). Cordyceps: Attack of the killer fungi. https://www.youtube.com/watch?v=XuKjBIBBAL8.
Биология токсоплазмы и симптоматика токсоплазмоза:
Cornell Feline Health Center (2018). Toxoplasmosis in Cats. https://www.vet.cornell.edu/departments-centers-and-in-stitutes/cornell-feline-health-center/health-information/feline-health-topics/toxoplasmosis-cats.
Поведение мышей, токсоплазма и дофамин:
Ihara F., Nishimura М., Muroi Y., Mahmoud М. E., Yokoyama N., Nagamune K., Nishikawa Y. (2016). Toxoplasma gondii infection in mice impairs long-term fear memory consolidation through dysfunction of the cortex and amygdala. Infection and immunity. 84(10). 2861–2870.
Токсоплазмоз у людей:
Flegr J., Prandota J., Sovičková М., Israili Z. H.