litbaza книги онлайнРазная литератураСолнечные элементы - Марк Михайлович Колтун

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 41 42 43 44 45 46 47 48 49 50
Перейти на страницу:
диапазоне длин волн, причем нагрев излучателя осуществляется с помощью концентратора солнечного света; диапазон длин волн, испускаемых селективным излучателем, как правило, выбирается вблизи энергии запрещенной зоны полупроводникового материала, из которого изготовлен солнечный элемент.

Активно исследуются фотолюминесцентные солнечные концентраторы, называемые также плоскопараллельными или плоскими концентраторами.

Солнечный свет, который падает на плоскую пластину, покрытую слоем люминофора, поглощается им. В процессе поглощения света падающие фотоны возбуждают молекулы люминофора (в этом качестве могут быть использованы и многие органические красители). При этом возникает новое излучение, но уже с другой длиной волны, характерной для данного люминофора. Переизлученная энергия остается внутри плоской пластины благодаря внутреннему отражению и после многократного отражения от плоских отражающих стенок попадает на солнечные элементы, установленные по периметру плоского прямоугольного концентратора.

Исследование процессов деградации параметров солнечных элементов и методы их стабилизации

Исходные характеристики солнечных элементов могут, к сожалению, заметно ухудшаться в процессе эксплуатации.

Повышение температуры приводит, как правило, к росту фототока и падению ЭДС, выходной мощности и КПД солнечных элементов, причем градиент падения мощности зависит от природы полупроводникового материала — для широкозонных материалов он мал, для узкозонных велик. У кремниевых солнечных элементов с повышением температуры на 100o C мощность, генерируемая ими, падает на 45 %, а у солнечных элементов на основе арсенида галлия — на 25 % (напомним, что ширина запрещенной зоны кремния составляет 1,02 эВ, арсенида галлия — 1,43 эВ).

Увеличение плотности падающего потока излучения в несколько раз может также привести к резкому уменьшению выходной мощности солнечных элементов, если последовательное сопротивление элементов сравнительно велико — около 1 Ом×см2. Последовательное сопротивление обычных солнечных элементов составляет 0,5–0,6 Ом см2, и их можно применять (без ухудшения электрических характеристик) в условиях 5—7-кратного увеличения плотности потока солнечного излучения, характерного для наземных условий средней полосы СССР (обычно 400–800 Вт/м2).

Различные способы уменьшения последовательного сопротивления, например путем создания частой контактной сетки на лицевой поверхности элементов с оптимизированными размерами полос, позволяют не только снизить его, но и более эффективно использовать возрастание плотности потока солнечного излучения, создаваемое чаще всего с помощью концентраторов света разнообразных конструкций. В ряде работ было показано, что значительное увеличение плотности падающего на солнечные элементы потока излучения приводит к росту КПД за счет возникновения полезных тянущих электрических полей в объеме полупроводника (если, конечно, при этом не происходит падения мощности из-за рассеяния тока при прохождении через элементы вследствие их значительного последовательного сопротивления). Экспериментальные исследования подтвердили этот вывод. При снижении последовательного сопротивления солнечных элементов до 0,1 Ом×см2 максимальный КПД преобразования ими солнечной энергии наблюдался при 40—50-кратных потоках солнечного излучения. При снижении последовательного сопротивления до 0,01 и менее удается эффективно преобразовывать в электроэнергию потоки излучения, превышающие однократные солнечные в 500–700 раз.

Следует указать, что отмеченные выше зависимости выходной мощности солнечных элементов от интенсивности падающего света и температуры носят полностью обратимый характер (если, конечно, в процессе работы не произошло значительного перегрева элементов — до температур, превышающих предел работоспособности контактных слоев или покрытий, что обычно составляет 150–200o С).

При эксплуатации как в космосе, так и на Земле солнечные элементы и полупроводниковые материалы, из которых они сделаны, подстерегает также опасность необратимых изменений. Особенно большое снижение выходной мощности солнечных элементов и батарей наблюдается при воздействии корпускулярного облучения — протонами и электронами радиационных поясов Земли, а также при многократном термоциклировании всей конструкции солнечных батарей при заходе в тень Земли и при выходе из нее. Значительные температурные напряжения, возникающие внутри солнечных элементов при термоциклировании из-за разницы в коэффициентах теплового расширения различных полупроводниковых слоев, образующих гетеропереходы, или контактных, просветляющих, защитных и полупроводниковых слоев (в случае как гомо-, так и гетеропереходов), приводят к механическому разрушению солнечных элементов, если величина этих напряжений превышает прочность отдельных слоев элементов или величину сил, удерживающих эти слои вместе.

Значительный опыт накоплен разработчиками разных стран в создании солнечных элементов и батарей, способных успешно противостоять отрицательному воздействию радиации и термоциклировании. В настоящее время удается изготавливать солнечные батареи таких конструкций, которые способны работать в условиях космоса и на Земле десятки лет без значительного снижения мощности.

Решить эту сложную проблему помогло создателям солнечных элементов понимание сложных и тонких физических процессов, происходящих в полупроводниковых материалах и на их границе с другими слоями, входящими в состав солнечных элементов, при деградации их параметров под влиянием различных видов внешнего воздействия. Исследование этих процессов проводится в современных лабораториях с привлечением самых разных способов анализа структуры, состава, примесей и дефектов в материалах: электронной и оптической растровой микроскопии, вторично-ионной спектроскопии, Оже-спектроскопии, масс-спектрометрии, рентгеновского микроанализа, фото-, катодо- и электролюминесценции, емкостной спектроскопии глубоких уровней, инфракрасной спектроскопии и других.

Еще два вида воздействий, приводящих к необратимой деградации солнечных элементов, привлекли внимание исследователей в последние годы. Один из них вызывает деградацию, которая условно может быть названа химико-термической, второй — фотонную.

Химико-термическая деградация возникает, например, из-за влияния остаточной атмосферы космического корабля и выхлопных газов двигателей на параметры солнечных элементов. Не менее опасна для солнечных элементов наземных фотогенераторов и их оптических покрытий загрязненная газообразными щелочными и кислотными отходами атмосфера больших городов. Необычные химические реакции с участием свободных радикалов, происходящие при повышенной температуре на торцевых и свободных от покрытий поверхностях солнечных элементов, вызывают закорачивание электронно-дырочных переходов, коррозию контактов, потемнение покрытий.

Влияние фотонной деградации было не сразу обнаружено, поскольку его довольно трудно отделить от воздействия корпускулярной радиации и химико-термической деградации.

Длительное время считалось, что повреждающее воздействие самого солнечного излучения на солнечные элементы может выразиться лишь в потемнении оптических покрытий. Разработка светостойких многослойных покрытий, в которых верхний слой — стеклопленка с добавлением двуокиси церия — поглощает все ультрафиолетовое излучение с длиной волны короче 0?36 мкм, позволила добиться уменьшения деградации элементов, вызываемой ухудшением оптических свойств покрытий, до весьма малых значений (0,5–2,5 %) даже в условиях непрерывной работы на борту космических аппаратов в течение нескольких лет.

В связи с этим для многих исследователей было неожиданностью обнаруженное явление ухудшения свойств самих элементов непосредственно под действием оптической части солнечного излучения. В ходе первых опытов, когда изучалось совместное воздействие солнечного света, корпускулярного облучения и температуры, выяснились некоторые важные особенности одновременного влияния нескольких повреждающих факторов на свойства полупроводниковых материалов и солнечных элементов. Такие опыты достаточно полно отражают реальные условия эксплуатации солнечных элементов как в космических, так и в наземных условиях.

Было показано, что солнечные элементы с низким содержанием кислорода в исходных пластинах кремния, полученного методом бестигельной зонной плавки, обладают высокой степенью фотонной деградации

1 ... 41 42 43 44 45 46 47 48 49 50
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?