litbaza книги онлайнРазная литератураАвтоутопия. Будущее машин - Джон Бентли

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 55
Перейти на страницу:
битов данных в цифровой форме. Затем он ищет знакомые шаблоны в этой базе, чтобы выбрать правильный вариант поведения. Иногда это называют нейронной сетью. Когда шаблоны и необходимые варианты поведения определены, они переводятся в физическую форму: в действие приходят ускоритель, тормоза, руль или другие системы вроде фар и даже звукового сигнала.

Мощный интеллект

Автопилот будет не единственным проявлением интеллекта машин.

В автомобилях появится технология распознавания лиц, позаимствованная у смартфонов. С ее помощью можно будет открывать дверь и заводить машину. Еще одна функция прямиком из смартфона – голосовой помощник. Сири, Алекса и другие станут быстрее ставить музыку и точнее отвечать на неотложные вопросы. Владельцы электрокаров смогут выбирать звук, который издает их автомобиль (что-то вроде рингтона для машины). Компания BMW уже наняла Ханса Циммера, композитора фильма «Бегущий по лезвию 2049», чтобы тот написал приятную мелодию, которая предупреждала бы пешеходов о приближении практически беззвучной машины. Скоро автомобиль настолько поумнеет, что заменит курьера. Сервисы смогут открывать машину и оставлять там посылки (или даже чистую одежду из химчистки). Автопарковка появится гораздо раньше автопилота. Вызов машины за несколько метров с помощью приложения на смартфоне или параллельная парковка без помощи водителя быстро станет вчерашним днем. Вместо этого автомобиль сам заранее узнает о свободных местах и построит к ним маршрут для самостоятельной парковки. А после владелец сможет автоматически вызвать машину когда и куда угодно.

В автомобилях будущего будет решена проблема со звуком: в каждое кресло встроят устройства подавления шума и усиления голоса, что позволит спокойно общаться с попутчиками. Более того, салон машины станет просторнее и его можно будет изменять по своему вкусу, настраивая экраны, приборную панель и графику. Экраны дополненной реальности будут выводить подсказки GPS-навигатора и полезные указания прямо на лобовое стекло.

Если в двух словах, то автомобиль находит шаблон в базе данных и реагирует на него. Такую же технологию используют для прогнозирования многих ситуаций – от землетрясений до сердечных заболеваний. Со временем стало возможным анализировать результаты исследований на наличие раковых клеток, распознавать болезни глаз и повреждение мышц. Компьютер справляется с задачей быстрее и точнее врача. Эта же технология оказалась полезной при распознавании лиц (от этого в какой-то степени даже некомфортно). Были случаи, когда записывали биометрическую информацию посетителей концерта, решивших сделать фото в будке, или когда людей по ошибке задерживали за магазинное воровство просто из-за того, что их черты лица схожи с чертами преступников. Из-за этого распознавание лиц приобрело дурную славу. Эти ситуации показали, насколько глубокое обучение может не оправдать ожидания.

Распознавание шаблонов на дороге заметно сложнее, ведь нужно учитывать множество факторов в сжатые сроки. Разработка программного обеспечения, которое поможет реагировать на сигналы из окружающей среды, – крайне сложная задача. Наиболее очевидный способ научить автомобиль правильным действиям – так называемое поведенческое клонирование (источником информации выступает опытный водитель). На следующем этапе система практикуется и учится принимать решения самостоятельно, повышая свой уровень вождения. При этом процесс контролирует человек и вмешивается, если что-то идет не так (а это случается часто).

На базовом уровне система способна определить, что дорога свободна, на основе большого объема подобных фотографий. Сопоставив данные, система увеличивает скорость до предустановленного предела. Задача становится сложнее, если на дороге много легковых автомобилей, фур, пешеходов и велосипедистов, а в базе нет готовых действий для этой ситуации. Системе придется угадывать, как поведет себя каждый из участников движения, и реагировать соответственно.

Себастьян Трун считает точное восприятие наиболее сложным аспектом. Он отмечает, что в начале работы над проектом Google по разработке автономных автомобилей модуль восприятия не мог отличить пакет от сбитого ребенка. Как уже было сказано, прогресс есть. На конференции Google I/O в 2018 году беспилотник Waymo продемонстрировал взаимодействие с пешеходом, несшим доску размером с дверь, рабочим, наполовину вылезшим из люка, и даже людьми, одетыми в надувные костюмы динозавров. В каждом случае очертания пешеходов были неясны, но Waymo верно их распознавал.

Существуют проблемы и с системой глубокого обучения. По сути, каждая ситуация, с которой сталкивается система, должна быть ей знакома. В противном случае у нее нет варианта действий. Одна из проблем называется «переобучение». Система начинает устанавливать связь между показателями, которые друг к другу никак не относятся. Это все равно что пытаться угадать число, которое выпадет на кубике, основываясь на его цвете или времени суток. Программа искусственного интеллекта будет продолжать строить гипотезы по поводу выпадающих чисел на базе всех параметров, которые ей доступны.

Проблема усугубляется, когда рассматривается больше факторов. Представим, что я повернул налево. Система может решить, что я поступил так из-за велосипедиста в 200 метрах от меня. К тому же я уже несколько раз делал так в этом районе в это время суток. Я описываю очень схематично, но эти примеры позволят понять сложность обучения ИИ вождению, так как там множество переменных.

Недообучение – обратная проблема. Система ИИ не всегда улавливает нужные связи. К примеру, она может не распознать обочину дороги или не понять, пешеход перед ней или велосипедист, неверно истолковав данные с камеры и лидара. Обычно для борьбы с недообучением в систему загружают новые данные или больше практической информации о взаимосвязи между системой ИИ и реальным миром. В компаниях, занимающихся разработкой беспилотных автомобилей, тысячи сотрудников вручную снабжают изображения тегами с полезной информацией. Такое дополнение нейронных сетей фактическими данными позволяет устранить недообучение.

Другая проблема – обобщение. Если человек знает, как выглядят мышь и песчанка, то без труда скажет, что хомяк находится где-то между ними – еще один млекопитающий грызун. Искусственному интеллекту такая задача кажется сложной. Ему тяжело взять что-то знакомое и на основе этого создать нечто новое, которое при этом обладает смыслом. ИИ или вовсе не распознает новый объект, или выдает постоянно меняющиеся описания. Именно поэтому чат-боты пока плохо поддерживают беседу. Нет ощущения, будто они понимают хоть что-то. Чат-боты просто подбирают более-менее подходящую фразу из тех, что слышали прежде.

Искусственный интеллект в действии. Процессор Nvidia выделяет разноцветной обводкой и другими способами те объекты, которые удалось распознать: машины, пешеходов и велосипедистов.

Эксперты по ИИ считают программное обеспечение беспилотных автомобилей чем-то вроде черного ящика. Входные данные известны. Выходные – тоже. Но как система приходит от одного к другому, остается загадкой. Не вполне понятно, как работают алгоритмы или как «думает» машина. В компании Nvidia попытались визуализировать это с точки зрения автопилота. На изображении, полученном с датчиков автомобиля, они выделили объекты,

1 2 3 4 5 6 7 8 9 10 ... 55
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?