Шрифт:
Интервал:
Закладка:
Древесный уголь был единственным бездымным топливом доиндустриальной эпохи, которое все традиционные цивилизации использовали для обогрева домов. А его изготовление сопровождается значительной потерей энергии, ведь даже в середине XVIII века типичное соотношение каменный уголь/дерево составляло один к пяти, что значило в терминах энергии (сухое дерево – 18 ГДж/т, древесный уголь, теоретически чистый углерод, – 29 ГДж/т) эффективность преобразования всего 30 % (5 х 18/29 = 0,32). Так что плотность мощности древесины, предназначенной для получения каменного угля, всего около 0,2 Вт/м2. Поэтому большим доиндустриальным городам, расположенным в умеренном климате северного полушария и зависящим от каменного угля (Пекин может быть хорошим примером), требовалась покрытая лесом территория по меньшей мере в 100 раз больше их собственного размера, чтобы не остаться без топлива.
Примечание 1.6. Повышение эффективности и парадокс Джевонса
Технический прогресс ведет за собой множество впечатляющих достижений в области эффективности, и история освещения является одним из лучших примеров (Nordhaus 1998; Fouquet and Pearson 2006). Свечи превращают всего лишь 0,01 % химической энергии сала или воска в свет. Лампочки Эдисона, изобретенные в 1880-х годах, были примерно в десять раз эффективнее. К 1900 году угольные электростанции имели эффективность примерно 10 %, лампочки превращали не более 1 % энергии в свет, отсюда ясно, что лишь 0,1 % химической энергии угля становилось светом (Smil 2005). Лучшая газовая турбина парогазового цикла (используется горячий газ, покидающий газовую турбину, чтобы производить пар для паровой турбины) в наше время имеет эффективность 60 %. Флуоресцентные лампы могут похвастаться 15 % эффективности, как и диодные светильники (USDOE 2013). Это значит, что около 9 % природного газа превращается в свет, выигрыш в 90 раз по сравнению с концом XIX века. Такой выигрыш сохраняет капитал и уменьшает текущие издержки, а также снижает давление на окружающую среду.
Но в прошлом рост эффективности преобразования энергии не всегда приводил к реальной экономии. В 1865 году Стэнли Джевонс (1835–1882), английский экономист, указал, что введение более экономичных паровых машин сопровождалось значительным увеличением потребления угля, и сделал такой вывод: «Будет ошибочным считать, что экономия при использовании разных видов топлива приведет к уменьшению потребления. На самом деле все обстоит наоборот. Как правило, новые методы экономии ведут к увеличению потребления в соответствии с принципом, учтенным во множестве параллельных случаев» (Jevons 1865, 140). Реальность этого явления подтвердили многочисленные исследования (Herring 2004, 2006; Poliment et al. 2008), но в богатых странах, где высок объем потребляемой энергии на душу населения и где достигнут уровень насыщения, этот эффект слабеет. В результате реакция на повышение эффективности на уровне конечного использования часто мала и еще уменьшается со временем, и в масштабах целой экономики выгода может быть очень небольшой, если вообще быть (Goldstein, Martinez, and Roy 2011).
Когда эффективность рассчитана для производства продуктов питания (энергия в пище/энергия на входе для того, чтобы ее вырастить), топлива или электричества, ее обычно именуют энергоотдачей. Полезная энергоотдача в любом традиционном сельском хозяйстве опирается исключительно на мощность живой силы и должна значительно превышать единицу: съедобный урожай обязан содержать больше энергии, чем ее потребляется в виде пищи, необходимой людям и животным, которые производят этот урожай, а также тем, кто не работает и зависит от работающих. Непреодолимая проблема возникает, если мы пытаемся сравнить энергоотдачу в традиционном сельском хозяйстве, где используется только сила мускулов (и только преобразования недавно полученного солнечного излучения), и современным сельским хозяйством, которое спонсируется прямо (топливо для работ на полях) и косвенно (энергия, необходимая для синтеза удобрений и пестицидов и для производства сельскохозяйственных машин) ископаемым топливом и по этой причине неизбежно имеет более низкую энергоотдачу, чем традиционное сельское хозяйство (примечание 1.7).
И наконец, энергоемкость измеряет стоимость продуктов, услуг и даже общий объем производства в стандартных единицах энергии и стоимость самой энергии тоже. Среди наиболее широко используемых материалов алюминий и пластик имеют высокую энергоемкость, в то время как стекло и бумага сравнительно дешевы, а древесина (исключая затраты на фотосинтез) является наименее энергоемким из всех материалов (примечание 1.8). Техническое развитие в последние два века привело к тому, что энергоемкость во многих случаях значительно уменьшилась. Возможно, самый известный пример: плавка чугуна на коксе в больших домнах в наше время требует меньше чем 10 % энергии на единицу массы горячего металла, чем в случае доиндустриального производства чугуна на древесном угле (Smil 2016).
Примечание 1.7. Сравнение энергоотдачи в производстве продуктов питания
С начала 70-х годов XX века энергетические показатели начали использовать, чтобы показать превосходство традиционного сельского хозяйства и низкую энергоотдачу современного сельского хозяйства. Такие исследования на самом деле вводили нас в заблуждение, потому что между двумя способами ведения хозяйства имеется фундаментальное отличие. Показатели для традиционного сельского хозяйства – просто коэффициент между энергией пищи, полученной в результате сбора урожая, и энергией пищи, которая требуется для выращивания этого урожая с помощью труда человека и животных. Наоборот, в современном сельском хозяйстве показатели будут учитывать очень значительный расход невозобновляемого ископаемого топлива, которое требуется для работы сельскохозяйственных машин, для изготовления этих машин и химикалий; трудовые затраты в этом случае пренебрежимо малы.
Если коэффициенты рассчитывать только с учетом произведенной для поедания энергии и затраченного на ее производство труда, тогда современное сельское хозяйство с крохотной потребностью в человеческих усилиях, лишенное тягловых животных, будет намного превосходить любое традиционное.
Если же затраты на производство современных злаков будут включать все использованное топливо и электричество, то энергоотдача окажется значительно ниже, чем в традиционном сельском хозяйстве. Такие расчеты возможны по той причине, что в физическом смысле все виды энергии эквивалентны. Продукты питания и топливо могут быть выражены в одних и тех же единицах, но остается очевидная проблема сравнения «красного с соленым». Не существует удовлетворительного способа сравнивать, просто и прямо, энергоотдачу от двух систем сельского хозяйства, которые функционируют, опираясь на принципиально разные источники энергии.
Примечание 1.8. Энергоемкость широко распространенных материалов
Источник: данные из Smil (2014b).
Энергетические затраты на производство энергии (часто именуемые EROI, отдача энергии на затраты, хотя EROEI, отдача энергии на затраты энергии, было бы более корректным) являются показательными только в том случае, если мы сравниваем величины, которые рассчитаны по идентичным методам с использованием стандартных предположений и четко обозначаемых аналитических ограничений. Современные высокоэнергетичные общества предпочитают разрабатывать ресурсы ископаемого топлива с наиболее высокой полезной энергоотдачей, и именно по этой причине мы большей частью предпочитаем нефть, и богатые нефтяные месторождения Ближнего Востока в особенности. Плотность энергии у нефти очень высокая, ее легко транспортировать, она обладает и другими очевидными преимуществами (примечание 1.9).