litbaza книги онлайнРазная литератураПринцип эксперимента. 12 главных открытий физики элементарных частиц - Сьюзи Шихи

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 46 47 48 49 50 51 52 53 54 ... 95
Перейти на страницу:
большого циклотрона, который они начали еще до войны, но с одним изменением: они включили принцип фазовой стабильности Эдвина Макмиллана[179] (см. главу 7) и построили протонный синхроциклотрон, который достиг беспрецедентной энергии пучка в 350 Мэ В. Команда из Беркли приступила к поиску новых частиц.

Сначала они использовали ускоритель для воспроизведения открытий, сделанных с использованием космических лучей. Эксперименты на горных вершинах с облачными камерами и ядерными эмульсиями показали себя продуктивным методом обнаружения позитронов, мюонов и пионов, как мы видели в главе 4. Теперь появились свидетельства существования новых частиц, обладающих свойствами, сильно отличающимися от тех, которые ученые видели раньше, – таких как электрически нейтральные V-частицы (1947), идентифицируемые по их распаду на пары треков, которые образовывали V-образную форму в детекторах. В 1949 году была обнаружена другая частица, которая распалась на три пиона[180], позже названная каоном, а в 1952 году в космических лучах была обнаружена новая частица, названная кси-минус-гипероном («гипер», потому что частица тяжелее протона)[181].

Природа, казалось, изобиловала частицами, которые не играли никакой роли в повседневной жизни, и было неясно, каково их значение. Что еще хуже, большинство новых частиц оказались долгоживущими (где «долго» означает наносекунды), что заставило теоретиков ломать голову. Новые частицы стали называть «странными». По всего нескольким фотографиям каждой новой частицы нельзя было полностью понять их.

Единственный способ разобраться в их тайнах – создать их в больших количествах в лаборатории.

Новый большой циклотрон в Беркли сыграл решающую роль. В 1949 году физики, работавшие с ускорителем Альвареса и Лоуренса на 350 МэВ, обнаружили частицу, которую не заметили облачные камеры: электрически нейтральную версию пиона[182]. Знаменательно то, что впервые неизвестная частица была обнаружена с использованием ускорителя, а не космических лучей. Наконец, технология ускорителей достигла беспрецедентных энергий, и с гораздо более совершенными и надежными машинами физики начали выходить за рамки того, что им могли предложить эксперименты с космическими лучами. Ускорители частиц обеспечивали контролируемые условия, необходимые для того, чтобы собрать воедино сложную головоломку из частиц и сил. Единственная проблема заключалась в том, что 350 МэВ – это недостаточно высокая энергия, чтобы увидеть полную картину.

Энергетический диапазон ускорителя был решающим, потому что странные частицы оказались тяжелыми – их масса больше массы ранее открытых частиц, таких как мюон и пион. Эквивалентность между энергией и массой определяется уравнением Эйнштейна E = mc2 и настолько укоренилась в физике элементарных частиц, что мы даже используем единицы энергии для описания масс частиц. Нейтральный пион (π0), например, имеет массу 135 МэВ, что является его массой покоя – массой, измеренной в неподвижном состоянии, но выраженной в единицах энергии (МэВ). Эта эквивалентность между массами и энергиями частиц означает, что E = mc2 дает нам обменный курс между массой и энергией. Это абсолютно ошеломляющий курс, потому что c, скорость света, составляет 299 792 458 метров в секунду. В квадрате это число настолько велико, что я не осмелюсь его здесь записать. И это больше не теоретический обмен: с большими ускорителями это стало экспериментальной реальностью.

Создание ускорителей для достижения более высоких энергий уже не сводилось только к исследованию нейтронов и протонов в ядре. Чего хотели ученые, хотя в то время они не формулировали это таким образом, так это создать совершенно новые частицы из вакуума, из энергии. Поначалу это сбивает с толку. Основной принцип заключается в том, что мы бомбардируем мишень высокоэнергетическими частицами – в данном случае протонами. Первоначальные частицы исчезают, и вся эта энергия преобразуется в новые частицы, новую материю. Исходная частица просто перестает существовать – что противоречит представлениям классической физики, но допускается в квантовой механике.

Конечно, тут есть ряд правил: природа не позволит вам бомбардировать любую мишень любой частицей и производить все, что вам заблагорассудится. Должны соблюдаться определенные величины. Например, общая энергия частиц, вступающих в столкновение, должна быть такой же, как и при выходе. Когда вы ударяете пучком частиц в цель, большая часть этой энергии идет не на создание новых частиц, а уносится в виде кинетической энергии в обломках. Существуют и другие правила, регулирующие взаимодействия частиц, включая сохранение электрического заряда, момент импульса (частица может вращаться вокруг своей оси) и другие квантовые числа, но подробнее об этом позже. Сейчас важно то, что для создания странных частиц физикам из Беркли был нужен протонный пучок с более высокой энергией, чем когда-либо мог обеспечить циклотрон.

Перед Альваресом и Лоуренсом возникла новая большая цель: построить машину достаточно мощную, чтобы создавать все известные странные частицы, обнаруженные в космических лучах, и, возможно, даже более тяжелые. Для этого надо построить машину нового типа. Вместо циклотрона, для которого требовался один огромный магнит (магнит для циклотрона с энергией в 350 МэВ был настолько велик, что команда из 100 человек смогла легко сфотографироваться, сидя в его железном ярме), они собирались построить ускоритель, кольцо которого состоит из множества небольших магнитов. Команда из Беркли начала разрабатывать планы протонного синхротрона[183] – кольцеобразной машины, отличной от ранее существовавшего синхроциклотрона, – которая могла бы достигать тех же энергий, что и частицы, исходящие от космических лучей. Поскольку такой ускоритель мог достигать миллиардов электрон-вольт, диапазона ГэВ, название машины было соответствующим: ее назвали Беватрон[184].

Команда из Беркли была не одинока в своих амбициях. На Лонг-Айленде 11 университетов объединились для создания новой Брукхейвенской национальной лаборатории, и строительство их собственного протонного синхротрона уже шло полным ходом. В 1953 году они запустили Космотрон – 23-метровое кольцо медного цвета, состоящее из 288 магнитов, каждый из которых весит шесть тонн. Вершина промышленной красоты. Внутри всей этой меди и железа находилась вакуумная труба, в которой протоны разгонялись до 88 % от скорости света. Когда Космотрон достиг расчетной энергии в 3,3 ГэВ, он стал рекордсменом среди ускорителей, превзойдя циклотрон в Беркли почти в 10 раз.

Команда из Беркли не отставала, и в 1954 году, всего через год после запуска Космотрона, Беватрон с ревом ожил. Ошибиться тут было невозможно: огромный мотор-генератор ходил взад и вперед, наполняя бетонный зал воющими звуками. Беватрон был даже больше Космотрона, его ширина составляла 41 метр, а вакуумная труба была такой большой, что, как говорили, по ней можно чуть ли не проехать на автомобиле. Альварес и его коллеги – главный физик Эд Лофгрен и инженер Уильям Бробек – превзошли своих соперников, достигнув почти вдвое большей энергии, чем у Космотрона, и создав пучок протонов с рекордной энергией в 6,2 Гэ В.

Зачем строить два

1 ... 46 47 48 49 50 51 52 53 54 ... 95
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?