Шрифт:
Интервал:
Закладка:
— Нет, вычеркнул. Девятку! А мог бы вычеркнуть и нуль. А число при этом всё равно делилось бы на 9 без остатка. Так что угадать зачёркнутую цифру в данном случае точно невозможно.
Президент чуть не заплакал:
— В чём же дело?
— Просто Магистр (а может быть, и сам барон Мюнхгаузен) забыл предупредить, что вычёркивать можно любую цифру, кроме нуля или девятки — по выбору.
— В общем, с первым вопросом всё, — заключил Сева. — Переходим к следующему…
— Не торопись, — перебил я. — Есть ещё один, притом более простой способ отгадать зачёркнутую цифру. Но для этого надо уметь вычислять однозначную сумму цифр.
Все снова загалдели и потребовали разъяснения: что ещё за однозначная сумма цифр?
— Всем известно, — сказал я, — что однозначным числом называется число, состоящее из одной цифры, двузначное число состоит из двух цифр и так далее. Так вот, цифры числа надо складывать до тех пор, пока сумма не окажется однозначным числом. Для примера возьмём число 187 254 683. Сумма его цифр: 1+8+7+2+5+4+6+8+3 = 44. Теперь найдём сумму цифр числа 44. Это 8. Вот вам и однозначная сумма цифр заданного числа. Так вот, если в прочитанном вам числе вычислить однозначную сумму его цифр и дополнить её до девятки, то это дополнение и будет искомой, то есть зачёркнутой цифрой.
Нулик, по своему обыкновению, стал проверять моё правило на примере и выбрал число, названное девочкой в очках: 5871. Однозначную сумму цифр он нашёл правильно: 5+8+7+1 = 21, далее 2+1 = 3, дополнение до девяти равно 6. Ура!
Ребята снова загалдели. Сева приложил палец к губам:
— Эй, вы, потише! А не то сюда весь дом сбежится…
Когда все немного успокоились, Олег предложил для вычисления однозначной суммы цифр ещё более короткий способ, чем мой. Он просто-напросто вычёркивал в числе цифры, которые в сумме давали 9. Для этого он воспользовался моим же примером: 187 254 683. Сначала он вычеркнул 1 и 8, затем 7 и 2, далее 5 и 4, наконец, 6 и 3. Осталась одна цифра — 8!
И снова шум, гам, крики «ура!»…
— Но самое замечательное, — сказал я, когда активисты наконец усовестились, — что с помощью однозначной суммы цифр можно проверять правильность, а лучше сказать — неправильность некоторых вычислений. Вот, например, сложим числа 138 и 244. Сумма их равна 382. Допустим, мы ошиблись и получили в сумме 381. Произведём проверку. Однозначная сумма цифр числа 138 равна 3, а числа 244 — 1. Сумма этих сумм: 1+3 = 4. Но так как однозначная сумма цифр числа 381 равна 3, значит, сразу видно, что допущена ошибка. А вот однозначная сумма цифр числа 382 как раз и есть 4. Точно так же можно проверить правильность ответа при умножении и при возведении в степень.
Нулик потребовал немедленных доказательств, но из-за позднего времени мы их отложили и перешли ко второму вопросу.
К счастью, на него ушло гораздо меньше времени, несмотря на то что активисты галдели по-прежнему.
Улучив удобный момент, Сева изловчился и довёл до сведения малопочтенного собрания, как летели утки после выстрела барона Мюнхгаузена.
— Вначале, как вы помните, они летели вереницей, по порядку номеров: 1, 2, 3, 4, 5 и так далее. Но, услышав выстрел, мигом перестроились и образовали в воздухе острый угол. При этом ясно, что одну сторону угла составляли утки с чётными номерами — 2, 4, 6, 8… а другую сторону — с нечётными: 1, 3, 5, 7, 9… И конечно же, на бечёвке оказались утки нечётные. Потому что, когда барон складывал номера этих уток подряд, у него вслед за единицей оказалось число 4 (1+3 = 4), далее 1+3+5 = 9, затем 1+3+5+7 = 16… Таким образом, в сумме у него всё время получались квадраты количества отсчитываемых уток: 1=12, 4=22, 9=32, 16=42 и так далее.
— До-ка-за-тель-ства! До-ка-за-тель-ства! —скандировали активисты.
— Обратите внимание, — успокоил их Олег, — любое нечётное число можно получить, умножив его порядковый номер на два и вычтя затем единицу. Например, 7 — четвёртое по порядку нечётное число. Умножим 4 на 2 и вычтем 1 — получим: 4×2 — 1 = 7. Обобщая это правило, можно сказать, что всякое «иксовое» нечётное число равно (2х—1). А теперь сложим икс последовательных нечётных чисел, начиная с единицы. По правилу арифметической прогрессии надо сложить первый и последний члены, умножить сумму на число всех членов и разделить на два. Итак, обозначив сумму икс членов латинской буквой S, найдём, что
— Что и требовалось доказать, — закончил Олег под дружный вздох удовлетворения.
Переждав очередной взрыв активистских эмоций, Таня быстро и толково разобралась в другой закономерности утиных номеров. Она обратила внимание присутствующих на то, что если брать по порядку сперва число 1, затем сумму двух последующих нечётных чисел: 3+5, далее сумму трёх последующих нечётных чисел: 7+9+11, затем — сумму четырёх и так далее, то при этом как раз получается та любопытная зависимость, которую подметила Единичка. Эти суммы представляют из себя кубы последовательных целых чисел:
1 = 13
3+5 = 23 = 8
7+9+11 = 33 = 27
13+15+17+19 = 43 = 64 и так далее.
— Точно подмечено, — сказал Олег. — Но из этого вытекает ещё одна любопытная штука. Попробуем сложить правые и левые части Таниных равенств:
1+3+5+7+9+11+13+15+17+19 = 13+23+З3+43.
— Но ведь только что, — продолжал Олег, — Сева доказал, что левая часть этой суммы должна быть полным квадратом. А так как слева написано 10 последовательных нечётных чисел, то очевидно, что 102 = 13+23+З3+43. Но это ещё не всё. Ведь 10 = 1+2+3+4, не так ли? Следовательно, получается вот что:
(1+2+3+4)2 = 13+23+З3+43.
— Это что же, справедливо только для четырёх чисел? — спросил взлохмаченный активист.
— А мы сейчас проверим, — вступил в свои права президент.
Оказалось, что правило пригодно и для двух, и для трёх, и для пяти, и