Шрифт:
Интервал:
Закладка:
О’кей: значительные изменения цен случаются чаще, чем предполагалось. Но что это значит для инвесторов с практической точки зрения? Я вижу здесь несколько важных моментов:
• Причинно-следственное мышление. Одно из основных свойств систем с самоорганизующейся критичностью – отсутствие линейной зависимости между величиной воздействия и величиной результирующего события. Иногда небольшие воздействия могут приводить к крупномасштабным событиям. Поэтому не нужно надеяться на то, что вам удастся найти причины для всех следствий.
• Риск и вознаграждение. Стандартная модель оценки риска, модель ценообразования на финансовые активы, предполагает линейную зависимость между риском и вознаграждением. Однако системам с самоорганизующейся критичностью, к которым относится и фондовый рынок, свойственна нелинейность. Инвесторы должны помнить о том, что финансовая теория стилизует реальные эмпирические данные. Тот факт, что академическое и инвестиционное сообщества так часто говорят о событиях в диапазоне пяти и более стандартных отклонений, можно рассматривать как прямое доказательство того, что широко используемые статистические меры не подходят для фондовых рынков.
• Формирование портфеля. Инвесторы, которые формируют портфель на основе стандартного статистического подхода, могут недооценивать риски (опыт против оценки риска). Эта проблема особенно актуальна для портфелей, которые широко опираются на заемные средства для повышения доходности. Многие из самых громких крахов в мире хедж-фондов были прямым результатом событий, связанных с толстыми хвостами. Следовательно, при формировании портфелей такие события должны обязательно учитываться инвесторами.
Как нужно действовать в мире, где правят толстые хвосты? Прежде всего необходимо оценить текущие ожидания, лежащие в основе цены актива, и затем рассмотреть различные диапазоны исходов и их вероятности. Этот процесс позволяет инвесторам учитывать в своих решениях потенциальные события, связанные с толстыми хвостами8.
Традиционная финансовая теория значительно продвинула вперед наше понимание рынков. Но некоторые ее фундаментальные предположения не подтверждаются фактами. Инвесторы должны знать о таких расхождениях между теорией и реальностью и соответственно корректировать свой процесс принятия инвестиционных решений (и портфели).
Формулы сокращения риска в основе портфельной теории полагаются на ряд обязательных и в конечном счете необоснованных допущений. Сначала предполагается, что изменения цен статистически независимы от друг друга… Второе предположение – все изменения цен распределяются по модели, которая соответствует стандартной колоколообразной кривой… Соответствуют ли финансовые данные таким предположениям? Конечно, нет.
Сам факт того, что петербургская проблема не получила единственного и всеми приемлемого решения за более чем 200 лет вопреки попыткам крупнейших умов мира, предполагает, что проблема акций роста не оставляет никаких надежд на удовлетворительное решение.
Компетентные инвесторы гордятся своей способностью определять правильную цену финансовых заявок. Эта способность является сутью инвестирования: рынок – лишь средство для обмена денег на будущие заявки и наоборот.
Хорошо, вот вам ситуация для оценки: предположим, некто подбрасывает безукоризненную монету. Если она упадет кверху орлом, вы получаете $2 и игра заканчивается. Если же решкой, монету бросают снова. Если при втором броске выпадет орел, вы получаете $4, если решка – игра продолжается. Для каждого следующего круга приз за орла удваивается (то есть $2, $4, $8, $16 и т. д.), и вы переходите на следующий круг, пока не выпадет орел. Сколько бы вы заплатили за право сыграть в такую игру?
Даниил Бернулли, выходец из семьи выдающихся математиков, представил эту проблему перед Императорской академией наук в 1738 г.1 Игра Бернулли, известная как санкт-петербургский парадокс, бросает вызов классической теории, которая говорит, что справедливый взнос за участие в игре равен ожидаемой ценности. Однако ожидаемая ценность в этой игре бесконечна. Каждый круг приносит выигрыш в $1 (вероятность 1/2n и выигрыш в $2n, или 1/2 × $2, 1/4 × $4, 1/8 × $8 и т. д.). Следовательно, ожидаемая ценность = 1 + 1 + 1 + 1… = ∞.
Естественно, очень немногие захотели бы заплатить даже $20, чтобы сыграть в такую игру. Бернулли попробовал объяснить этот парадокс предельной полезностью денег. Он утверждал, что сумма денег, которую человек готов заплатить за участие в игре, зависит от его ресурсов, – чем больше у вас денег, тем больше вы готовы заплатить. Однако объяснение Бернулли не вполне удовлетворительно. Санкт-петербургский парадокс уже два с половиной столетия заставляет размышлять над ним философов, математиков и экономистов2.
Если оставить в стороне философские моменты, санкт-петербургский парадокс проливает свет на две актуальные для инвесторов проблемы. Первая – распределение доходности на фондовом рынке не соответствует модели, принятой в стандартной финансовой теории. Это отклонение от теории особенно важно в таких областях, как управление рисками, эффективность рынков и индивидуальный выбор акций.
Вторая проблема касается оценки акций роста. Сколько вы готовы заплатить сегодня за акции с низкой вероятностью очень высокого выигрыша? В мире, где стоимость и доходность подвержены резким скачкам, этот вопрос становится насущным как никогда.
Распределения цены актива имеют большое практическое значение для портфельных менеджеров. Стандартная финансовая теория предполагает, что изменения цены активов следуют нормальному распределению, имеющему форму хорошо известной колоколообразной кривой. Это предположение верно бо́льшую часть времени, что позволяет аналитикам использовать очень робастные (устойчивые) вероятностно-статистические методы оценки. Например, для выборки, подчиняющейся нормальному распределению, вы можете рассчитать среднее значение и охарактеризовать вероятный разброс значений относительно среднего.
Однако многое в природе, включая сотворенный человеком фондовый рынок акций, не соответствует понятию «нормальный»3. Многие природные системы имеют две определяющие характеристики: большее число меньших по величине частей и подобные друг другу части в разных масштабах. Например, дерево имеет большой ствол и множество меньших по размеру веток, при этом маленькие ветви подобны большим. Такие системы называются фрактальными. В отличие от нормального распределения никакая средняя величина не характеризует фрактальную систему. В приложении 32.1 визуально сравниваются нормальная и фрактальная системы и приведены графики плотности распределения вероятностей, соответствующие этим данным. Фрактальные системы подчиняются степенным законам4.