Шрифт:
Интервал:
Закладка:
Программа Поула обработала данные каждого покупателя из базы данных Target. И он получил список сотен тысяч возможно беременных женщин, которых компания могла завалить рекламными проспектами подгузников, лосьонов, детских кроваток, салфеток и одежды для беременных в тот момент, когда их покупательские привычки особенно склонны к изменениям. Если хотя бы часть этих женщин или их мужья начнут совершать покупки в Таргет, компания получит миллионы долларов чистой прибыли.
Незадолго до начала этой массовой рекламной рассылки один из сотрудников отдела маркетинга спросил: «А как отреагируют женщины, когда поймут, что Target так много знает о них?»
«Мы отправляем женщине каталог со словами „Поздравляем с рождением первого ребенка!“, хотя она никогда не сообщала нам о своей беременности. Не всем это понравится, — пояснил мне Поул. — Мы очень строго соблюдаем все законы о неприкосновенности частной жизни. Однако, даже следуя закону, можно совершать поступки, от которых людям станет дурно».
Причина для беспокойства действительно есть. Примерно через год после создания Поулом модели выявления беременных в магазин Target в Миннесоте пришел мужчина и потребовал встречи с менеджером. Он был страшно зол и держал в руках объявление.
«Моя дочь получила это по почте! — воскликнул он. — Она еще учится в средней школе, а вы рассылаете ей купоны на детскую одежду и колыбели? Вы что, подталкиваете ее забеременеть?»
Менеджер никак не мог понять, о чем говорит мужчина. Затем посмотрел на конверт. Естественно, на нем значилось имя дочери разгневанного клиента, а внутри лежали рекламные проспекты на одежду для беременных, мебель для детских комнат и фотографии улыбающихся младенцев, которые счастливо глядели в глаза своим мамам.
Менеджер принес глубокие извинения, а спустя несколько дней позвонил и извинился еще раз.
Отец девочки был в замешательстве.
«Я поговорил с дочерью, — сказал он. — Оказывается, у нас дома много чего случилось, о чем я не имел ни малейшего понятия. — И он глубоко вздохнул. — В августе она должна родить. Я должен извиниться перед вами».
Target — не единственная компания, которая подняла волну беспокойства среди потребителей. Другие фирмы подвергались нападкам за куда менее назойливое использование данных. Например, в 2011 году житель Нью-Йорка подал в суд на McDonald’s, CBS, Mazda и Microsoft, утверждая, что рекламное агентство этих фирм следило за его интернет-серфингом, чтобы определить профиль его покупательских привычек. В настоящее время в Калифорнии идут процессы по групповым искам против сетей розничной торговли Target, Walmart, Victoria’s Secret и других. Компании обвиняют в том, что они просили покупателей сообщить свой почтовый индекс при оплате кредитной картой, а затем воспользовались этой информацией для поиска их почтового адреса.
Поул и его коллеги знали, что использование данных для прогнозирования беременности у женщин может привести к PR-скандалу. Как же вручить рекламные буклеты в руки будущим матерям, чтобы не подвергнуться обвинениям в слежке? Как воспользоваться чьими-то привычками и при этом суметь скрыть от человека, что изучаешь каждый его шаг?[52]
II
Летом 2003 года менеджер по продвижению товара из Arista Records Стив Бартелс начал звонить радиодиджеям и рассказывать о новой песне, которая наверняка им понравится. Называлась песня «Хей-я!», а исполняла ее хип-хоп группа «OutKast».
«Хей-я» оказалась оптимистичной смесью фанка, рока и хип-хопа с добавкой джаз-оркестра в исполнении одной из самых популярных групп планеты. На радио она звучала просто потрясающе. «Когда я впервые услышал ее, то по рукам мурашки пошли, — рассказывал мне Бартелс. — Она звучала как хит, как песня, которую годами будут слушать во время бар-мицвы и на студенческих балах». Вокруг кабинетов Arista Records руководители пели друг другу хором «встряхни, как фотографии с поляроида» прямо в коридоре. Они единогласно заявили, что эта песня взлетит.
Эта уверенность основывалась не только на интуиции. В то время звукозаписывающий бизнес претерпевал трансформации, похожие на перемены в Target и прочих компаниях, вызванные появлением новых данных. В то время как в розничной торговле использовали компьютерные алгоритмы для прогнозирования покупательских привычек, музыкальные и радиоруководители применяли компьютерные программы для прогноза привычек слушателей. Компания Polyphonic HMI — испанская команда статистиков и экспертов по искусственному интеллекту — создала программу под названием Hit Song Science, которая анализировала математические характеристики мелодии и прогнозировала ее популярность. Сравнивая ритм, высоту звука, мелодику, сочетание аккордов и другие особенности конкретной песни с тысячами хитов из базы данных Polyphonic HMI, Hit Song Science могла рассчитать бал, который определял вероятность успеха мелодии.