Шрифт:
Интервал:
Закладка:
Таким образом, первый вновь прибывший селится в номер 1, второй — в номер 3 и так далее.
Затем в один прекрасный день на ту же станцию прибывает бесконечное число бесконечно длинных поездов, целиком забитых желающими остановиться в отеле. Но администраторов это не пугает. Они просто немного усложняют объявление, с которым читатели, разбирающиеся в математической терминологии, могут ознакомиться в сноске[45]. В итоге номеров хватает всем.
Однако переполнить отель «Бесконечность» математически возможно. В 1870-е годы Кантор сделал ряд замечательных открытий и среди прочего доказал, что не все бесконечности равны. В частности, бесконечность континуума — число точек на отрезке (которое равно числу точек во всём пространстве или в пространстве-времени) — гораздо больше, чем бесконечность натуральных чисел. Для доказательства этого факта Кантор продемонстрировал, что не существует взаимно однозначного соответствия между натуральными числами и точками отрезка: у этого множества точек порядок бесконечности выше, чем у множества натуральных чисел.
Вот один из вариантов его доказательства, основанное на так называемом диагональном методе. Представьте себе колоду карт: её толщина — один сантиметр, а карты такие тонкие, что на каждое «действительное число» сантиметров между 0 и 1 приходится по карте. Действительные числа можно определить как десятичные дроби, лежащие в этих пределах, например, 0,7071…, где многоточие означает, что дальше знаков может быть бесконечно много. Тогда невозможно раздать эту колоду по одной карте в каждый номер отеля «Бесконечность». Предположим, что колоду всё же удалось распределить таким образом, и докажем, что это приводит к противоречию. Каждому номеру должна соответствовать карта, как, например, в таблице ниже. (Конкретные числа в ней не играют роли, поскольку мы доказываем, что действительные числа нельзя распределить по натуральным ни в каком порядке.)
Обратим внимание на бесконечную последовательность цифр, выделенных полужирным шрифтом — 6996…. А теперь рассмотрим десятичное число, построенное следующим образом: оно начинается с нуля, затем идёт десятичная запятая, а затем произвольные цифры с тем лишь исключением, что каждая из них должна отличаться от соответствующей по номеру цифры в бесконечной последовательности 6996…. Например, можно выбрать такое число: 0,5885…. Карта с построенным таким образом номером не могла попасть ни в один номер в отеле, потому что первой цифрой она отличается от карты, отправленной в номер 1, второй — от карты, попавшей в номер 2, и так далее. Таким образом, она отличается от всех карт, присвоенных номерам в отеле, что противоречит исходному предположению о том, что распределены были все карты.
Бесконечность, размеры которой позволяют поставить её во взаимно однозначное соответствие с натуральными числами, называется счётной — термин достаточно неудачный, потому что в реальности досчитать до бесконечности никто не сможет. Но он подразумевает, что в принципе до каждого элемента счётного бесконечного множества можно дойти, если считать элементы в некотором подходящем порядке. Бесконечности большего размера называются несчётными. Таким образом, между любыми двумя отдельными точками содержится несчётное бесконечное множество действительных чисел. Более того, существует несчётное множество порядков бесконечности, каждый из которых слишком велик, чтобы его можно было поставить во взаимно однозначное соответствие с более низкими порядками.
Ещё одно важное несчётное множество — множество всех логически возможных перераспределений постояльцев по номерам в отеле «Бесконечность» (или, как говорят математики, множество всех возможных перестановок натуральных чисел). Это можно легко показать, если взять любое перераспределение, заданное бесконечно длинной таблицей, например, такой.
Теперь представим, что все возможные перераспределения идут списком друг под другом, так что мы можем подсчитать количество строк. Если применить к этому списку диагональный метод, то окажется, что такой список невозможен, а значит, множество всех возможных перераспределений несчётно.
Поскольку администраторам отеля «Бесконечность» приходится задавать перераспределение в виде публичного объявления, оно должно состоять из конечной последовательности слов, то есть конечной последовательности символов из какого-либо алфавита. Множество таких последовательностей счётно, поэтому оно бесконечно меньше, чем множество возможных перераспределений. А значит, задать можно только бесконечно малую часть всех логически возможных перераспределений. Это замечательное в своём роде ограничение очевидно неограниченных возможностей администраторов отеля «Бесконечность» по перетасовке постояльцев! Получается, что почти все способы, которыми на уровне логики можно было бы перераспределить людей по номерам, недоступны.
В отеле «Бесконечность» — уникальная, самодостаточная система сбора отходов и избавления от них. Каждый день постояльцев сначала перераспределяют так, чтобы все комнаты были заняты. Затем даётся следующее объявление: «Просим всех в течение следующей минуты собрать мусор в мешок и передать его жильцу из следующего по порядку номера. Если в течение этой минуты вы получите мешок, за следующие 30 секунд передайте его дальше. Если за эти 30 секунд вы получите мешок, передайте его дальше в течение следующих 15 секунд и так далее». Чтобы выполнить такую просьбу, постояльцам нужно делать всё быстро, но передавать мешки бесконечно быстро никому не придётся, как не придётся иметь дело и с бесконечно большим числом мешков. Каждый человек произведёт конечное число действий, как и предписывают правила отеля. Всякая передача мусора прекратится уже через две минуты. Таким образом, по истечении этого времени ни у кого из постояльцев мусора не останется.
Весь собранный в отеле мусор из Вселенной исчезает. Исчезает в никуда. Но никто его в это «никуда» не транспортирует: каждый постоялец просто передаёт часть мусора в другой номер. Это «никуда», в которое исчез весь мусор, в физике называется сингулярностью. Сингулярности встречаются и в реальной жизни — в чёрных дырах и кое-где ещё. Но не будем отвлекаться: сейчас мы говорим о математике, а не о физике.