Шрифт:
Интервал:
Закладка:
Однако целью физики высоких энергий является не только поиск новых частиц. Эксперименты на коллайдерах высоких энергий дают информацию о фундаментальных законах природы, которые не доступны для наблюдения никаким иным способом, законах, которые действуют в области, слишком малой для того, чтобы ее можно было увидеть непосредственно. Эксперименты при высоких энергиях — единственный способ исследования любых взаимодействий, действующих на необычайно малых расстояниях.
В этой главе пойдет речь о двух экспериментах на коллайдерах, которые, с одной стороны, очень важны для подтверждения предсказаний Стандартной модели, а с другой стороны, накладывают ограничения на то, какие возможные теории за этим стоят. Сами эксперименты производят большое впечатление.
Но они должны также дать вам почувствовать, с чем в будущем предстоит столкнуться физикам, когда они обратятся к поискам новых явлений, например дополнительных измерений.
Открытые топ-кварка
История поиска топ-кварка замечательно иллюстрирует трудности поиска частиц на коллайдере в ситуации, когда его энергии едва хватает для их рождения, и экспериментаторам приходится применять все свое мастерство. Хотя топ-кварк не является частью какого либо атома или известного вещества, без него Стандартная модель была бы несамосогласованной, так что большинство физиков с начала 1970-х годов было уверено в его существовании. Однако вплоть до 1995 года никому не удавалось зарегистрировать хотя бы один топ-кварк.
К этому времени эксперименты по поиску топ-кварка тщетно проводились много лет. Кварк b, следующая по массе частица Стандартной модели, масса которой в пять раз больше массы протона, был открыт в 1977 году. Хотя физики в то время полагали, что топ-кварк вот-вот будет открыт, и экспериментаторы уже вступили в соревнование, кто быстрее его найдет и прославится, ко всеобщему удивлению опыт за опытом не давал результатов. Топ-кварк не могли найти на коллайдерах, работавших при энергиях в 40, 60 и даже 100 раз больших, чем та, которая нужна для рождения протона. Очевидно, что топ-кварк был тяжелым, существенно тяжелее всех других кварков, которые были уже открыты. Когда наконец после 20 лет поисков топ-кварк проявился на опыте, оказалось, что его масса почти в 200 раз больше массы протона.
Поскольку топ-кварк так тяжел, соотношения специальной теории относительности утверждают, что он может родиться только на коллайдерах, работающих на сверхвысоких энергиях. Такие энергии неизбежно требуют больших размеров ускорителя, так что сконструировать и построить подобный ускоритель технически очень трудно.
Тем ускорителем, на котором в конце концов получили топ-кварк, стал Тэватрон в Батавии, штат Иллинойс, в 30 милях от Чикаго. Коллайдер в Фермилабе был изначально спроектирован на энергии, много меньшие тех, которые нужны для рождения топ-кварка, однако инженеры и физики внесли множество изменений, необычайно усиливших возможности коллайдера. В 1995 году в итоге всех этих улучшений Тэватрон приступил к работе при значительно большей энергии, чем запланированная, производя при этом намного больше соударений, чем могла исходная машина.
Тэватрон, который все еще работает, находится в Фермилабе, ускорительном центре, который был официально открыт в 1972 году и получил свое имя в честь физика Энрико Ферми. Когда я впервые посетила Фермилаб, меня очень позабавило, что в этом месте росла дикая пшеница, бродили гуси и, как ни странно, бизоны. Если не считать бизонов, местность была унылой и ничем не примечательной. Кинофильм Мир Вейна снимался в местечке Аврора в пяти милях к югу от Фермилаба, и если вы видели этот фильм, то можете легко представить себе окружающую Фермилаб местность. К счастью, тамошние физики достаточно привлекательны, чтобы несмотря ни на что можно было чувствовать себя счастливой.
Тэватрон получил свое имя потому, что он ускоряет как протоны, так и антипротоны до энергии в один ТэВ, т. е. 1000 ГэВ, — самой большой энергии, достигнутой до сих пор на ускорителе. Пучки протонов и антипротонов большой энергии, порождаемые Тэватроном, крутятся по кольцу и каждые 3–5 мкс сталкиваются друг с другом в двух точках соударения.
Две разные коллаборации экспериментаторов установили свои детекторы в каждой из двух точек соударения, где пересекаются пути пучков частиц и античастиц и могут происходить интересные физические явления. Один из экспериментов получил название CDF (Collider Detector of Fermilab), а другой — название D0, являющееся обозначением точки соударения протонов с антипротонами, в которой был установлен детектор. В обоих экспериментах широко проводился поиск новых частиц и физических процессов, но в начале 1990-х годов все было нацелено на поиск Святого Грааля — обнаружение топ-кварка. Каждая коллаборация стремилась первой найти его.
Многие тяжелые частицы нестабильны и практически мгновенно распадаются. В этом случае экспериментаторы ведут поиск не самой частицы, а ее продуктов распада. Например, t-кварк распадается на d-кварк и W (заряженный калибровочный бозон, являющийся переносчиком слабого взаимодействия). В свою очередь, W распадается либо на лептоны, либо на кварки. Таким образом, в экспериментах по поиску топ-кварка ищут d-кварк в сочетании с другими кварками или лептонами.
Однако частицы не рождаются с бирками, на которых написано их имя, поэтому детекторы должны идентифицировать их по отличительным свойствам, например, значению электрического заряда, или взаимодействиям, в которых они участвуют, и регистрация этих свойств происходит в разных частях детектора. Два детектора CDF и D0 разделены на сегменты, каждый из которых фиксирует разные характеристики частиц. Один сегмент, трекер, детектирует заряженные частицы по электронам от ионизованных атомов, образующихся на пути этих частиц. Другой сегмент, называемый калориметром, измеряет энергию, выделяемую частицами при прохождении сквозь детектор. У детекторов есть и другие компоненты, которые могут идентифицировать частицы с иными характерными отличительными свойствами, например b-кварк, живущий до распада дольше большинства других частиц.
Как только детектор регистрирует сигнал, он передает его по сложной системе проводов и усилителей и записывает соответствующие данные. Однако не все, что детектируется, стоит того, чтобы это записывать. При столкновении протона и антипротона интересные частицы вроде топ- и антитоп-кварков рождаются очень редко. Значительно чаще в результате соударений возникают только более легкие кварки и глюоны и, следовательно, не происходит ничего, представляющего интерес. На самом деле на каждый топ-кварк, образованный в Фермилабе, приходилось десять триллионов событий соударений, не содержавших топ-кварк.
Ни одна вычислительная система не имеет достаточной мощности для того, чтобы выделить одно интересное событие среди такой кучи бесполезных данных. Поэтому экспериментаторы всегда используют триггеры — устройства, в которых сами компьютеры и заложенные в них программы действуют как вышибалы в ночном клубе и позволяют записывать только потенциально интересные события. Триггеры в CDF и D0 свели число событий для дальнейшего просеивания к одному на сто тысяч. Это все еще трудная задача, но намного легче поддающаяся обработке, чем одно искомое событие на десять триллионов бесполезных.