Шрифт:
Интервал:
Закладка:
Но на этом, как обнаружил Траут и его коллеги, история не заканчивается. «Когда мы начинали нашу исследовательскую программу, мы думали, что легко справимся с этой задачей, – признается он. – Но чем глубже мы копали, тем больше понимали, насколько сложен феномен совиньон блан. И дело здесь не только в самом винограднике». Если сорвать виноград с лозы и разжевать его, вы почти не заметите маракуйевых нот, поскольку в винограде еще нет молекул тиола – в нем присутствуют только их лишенные аромата прекурсоры. Тиолы образуются во время брожения, когда дрожжи атакуют прекурсоры и отщепляют от них молекулы тиола. Грубое обращение с виноградом заставляет его аккумулировать больше таких прекурсоров, поэтому убранный машинами виноград дает вина с содержанием тиола примерно в десять раз больше, чем виноград, собранный вручную. Это может быть одной из причин того, почему совиньон блан из Новой Зеландии, где, как правило, применяют механизированную уборку, имеет гораздо более выраженный аромат маракуйи, чем французский совиньон блан, который убирают руками. Даже транспортировка винограда на машинах с виноградника на винодельню ведет к увеличению содержания тиолов в готовом вине.
Наибольшее влияние на окончательный вкус вина оказывает процесс брожения, когда винные дрожжи и другие микробы перерабатывают сахарá, белки и прочие вещества, содержащиеся в виноградном соке, в спирт и летучие ароматические соединения. Каждый штамм дрожжей подходит к выполнению этой задачи с собственным уникальным набором генов и ферментов, в результате чего разные дрожжи могут производить из одинакового виноградного сока очень разные вина. Виноделы отлично об этом знают и предельно внимательно подходят к выбору дрожжей. Кроме того, немалую роль здесь играют региональные различия, поскольку каждый винодельческий регион – и, вполне возможно, каждый виноградник – имеет свою уникальную микробную экосистему. Виноделы редко стерилизуют виноград перед брожением, поэтому вся эта уникальная смесь микробов попадает в бродильный чан. Более того, многие виноделы полагаются исключительно на эту естественную «закваску». Следовательно, логично предположить, что региональный характер вина – его «терруар», если говорить языком винных критиков, – частично обеспечивается тем специфическим набором микробов, которые участвуют в его сбраживании.
Это правдоподобное предположение до недавнего времени оставалось неподтвержденным. Но несколько лет назад генетик Сара Найт и ее коллеги из Оклендского университета в Новой Зеландии решили наконец‑то узнать, действительно ли это так. Чтобы исключить любые различия в самом винограде, Найт взяла виноград из одной партии «совиньон блан» из Мальборо и простерилизовала его, чтобы уничтожить всех посторонних микробов. Затем она разделила сок между несколькими небольшими бродильными емкостями и посеяла в каждую из них разные варианты винных дрожжей, взятых из шести основных винодельческих регионов Новой Зеландии. Таким образом, виноградный сок и условия брожения были абсолютно одинаковыми – разными были только дрожжи. Когда вино созрело, оказалось, что разные варианты дрожжей из разных регионов дали вина с заметно различающимися вкусоароматическими профилями. Теория подтвердилась! Мало того, исследование Найт, вероятно, недооценило реальный эффект, поскольку в нем были использованы только винные дрожжи и не было учтено влияние уникальной микробной микрофлоры.
Для других культур влияние почвы на флейвор также, скорее всего, носит косвенный характер. Почва определяет, сколько воды и питательных веществ получает растение и, следовательно, сколько оно может произвести сахаров и летучих веществ, значимых для его флейвора. Вы можете подумать, что здесь действует правило «чем больше, тем лучше», но всё гораздо сложнее.
За объяснениями я решаю обратиться к Кэрол Вагстафф, исследователю‑растениеводу из Университета Рединга в Великобритании, который находится всего в нескольких минутах езды от знаменитого ресторана «Жирная утка» шеф‑повара Хестона Блюменталя. Команда Вагстафф – одна из немногих исследовательских групп, занимающихся изучением того, как условия выращивания, транспортировки и хранения влияют на пищевую ценность и флейвор сельскохозяйственных культур. Когда Вагстафф начинает говорить о своей работе, ее округлое лицо в обрамлении гривы непослушных каштановых волос совершенно преображается. Если условия слишком благоприятны, рассказывает она, растения вкладывают всю энергию в рост и мало заботятся о синтезе вторичных соединений. Только когда они чувствуют дефицит ресурсов, они начинают думать о защите и размножении. «Немного управляемого стресса идет на пользу. Когда растение испытывает небольшой стресс, оно вырабатывает больше вторичных соединений, а это означает, что вы получаете больше вкуса и аромата и больше питательных веществ», – объясняет она. Вероятно, именно поэтому клубника Уитакера дает более вкусные ягоды при небольшом дефиците воды. Как именно эта стрессовая реакция отражается на флейворе, зависит от того, что Вагстафф называет «метаболический аппарат», – то есть от специфического генетического набора ферментов и специфического набора вторичных веществ, за синтез которых они отвечают. Эта зависимость наглядно видна на примере рукколы (британцы называют ее рокет‑салатом), которая является одним из главных объектов исследований команды Вагстафф. «Вы можете наглядно увидеть, что при столкновении со стрессовыми условиями разные генотипы рукколы по‑разному меняют производство вторичных веществ», – говорит она.
Некоторую роль в определении вкусоароматических свойств культур могут играть и почвенные микроорганизмы. Например, мини‑кукуруза – популярный овощ в некоторых азиатских кухнях – содержит летучее ароматическое вещество, называемое геосмин, которое также придает земляной запах красной свекле. Исследователи считают, что молодые кукурузные растения не производят геосмин сами, поскольку у кукурузы, выращиваемой в английских теплицах, это соединение отсутствует. Они предполагают, что геосмин вырабатывается микроскопическими грибами, живущими на корнях растений. Грибок, а с ним и геосмин через корни проникает внутрь растения. Вполне возможно, что почвенные микробы влияют на флейвор и другими способами, но об этом пока известно очень мало.
До сих пор мы обсуждали только такие примеры, где применим принцип «чем больше вкуса, тем лучше», – но для многих овощей, особенно для представителей семейства крестоцветных с их острым вкусом, таких как руккола и брюссельская капуста, это не обязательно так. Многие люди – особенно носители чувствительного варианта рецептора горького вкуса T2R38 – находят горечь их вторичных соединений отталкивающей и предпочли бы, чтобы брюссельская капуста имела не более, а менее выраженный вкус. «Растениеводство – это невероятно сложное дело, – говорит Вагстафф. – У вас есть тысячи разных генотипов одного растения, у вас есть очень разные условия выращивания и, наконец, у вас есть миллионы потребителей с разными генотипами».
После того как плоды или овощи сорваны, их вкус и запах продолжают меняться в процессе хранения и по пути в магазин. Частично это происходит из‑за утечки летучих ароматических молекул в воздух (вспомните про помидоры). В то же время присутствующие в тканях ферменты могут производить новые ароматические вещества или изменять старые. Иногда это может означать, что флейвор плодов или овощей улучшается в процессе хранения. Например, при хранении в холоде руккола продолжает производить глюкозинолаты. Когда вы жуете листья, это вещество превращается в ароматные изотиоцианаты. Это хорошая новость: руккола, которую вы покупаете в магазине – если она относительно свежая, – может быть более ароматной, чем та, которую вы сорвали на своем огороде пару часов назад. Однако через несколько дней хранения, даже в холодильнике, это преимущество исчезает, поскольку «свежий» набор ароматических соединений уступает место продуктам распада жиров и другим неаппетитным веществам. У разных сортов рукколы вышеописанный процесс происходит с разной скоростью, и одни сорта хранятся лучше, чем другие, обнаружила Вагстафф.