litbaza книги онлайнДомашняяЗанимательная химия для детей и взрослых - Илья Леенсон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 54 55 56 57 58 59 60 61 62 ... 85
Перейти на страницу:

По-видимому, здесь нужны комментарии. Сначала о единицах измерения. Пикометр ( от исп. pico – «малая величина») – первая составная часть наименований некоторых физических единиц, означающая одну триллионную (10–12) долю исходной единицы. Например, 1 пФ (пикофарада) = 10–12 фарады, 1 пм = 10–12 м = 1000 нм (нанометров; от греч. nannos – «карлик»; нанометр – миллиардная часть метра).

Теперь о самих значениях радиусов. Не следует думать, что для их измерения нужны какие-то изощренные методы анализа. Атомы можно рассматривать как шары. Тогда их радиус легко рассчитать, зная постоянную Авогадро, массу моля элемента, его плотность и строение кристаллической решетки. Последнее необходимо для внесения поправки на «пустой объем» между шариками-атомами. Так, многие металлы имеют плотнейшую шаровую упаковку. При этом каждый атом-шар будет касаться 12 соседних: шесть из них разместятся вокруг него в одной плоскости и еще по три – сверху и снизу, в образовавшихся «ямках» (это легко увидеть с помощью шариков из пластилина). Чисто геометрически можно показать, что если шары уложить таким способом, то они займут 74,05 % всего объема (остальное приходится на пустоты между шарами).

Рассмотрим теперь атомы меди. Из справочника «Свойства неорганических соединений» следует, что радиус этих атомов равен 0,128 нм = 128 пм. Как получено это значение? Возьмем 1 моль (6,022 · 1023 атомов) меди. Его масса равна 63,55 г. Плотность меди (из того же справочника) равна 8,96 г/см3, поэтому 1 моль занимает объем 63,55/8,96 = 7,093 см3. Из этого объема на сами атомы приходится 0,7405 · 7,093 = 5,252 см3, а один атом имеет объем V = 5,252/6,022 · 1023 = 0,8721 · 10–23 см3. Как известно, объем шара V = 4π r 3/3, r = √3 V /4π= 1,28 · 10–8 см, что совпадает с данными справочника.

Почему же самые тяжелые атомы не самые большие? Здесь конкурируют два фактора: увеличение общего числа электронов (именно электронная оболочка, а не крошечное ядро, определяет размер атома) и усиление притяжения электронов к ядру. Так, в ряду лантаноидов и актиноидов с ростом атомного номера наблюдается не увеличение, а уменьшение радиуса атомов, несмотря на увеличение числа электронов в них (этот факт имеет существенное значение для химии этих элементов). Происходит это потому, что последовательное добавление f -электронов не может оказать серьезную конкуренцию действию возрастающего заряда ядра на внешние s – и p -электроны: они становятся чуть ближе к ядру. В результате атом последнего лантаноида – лютеция на 7 % меньше атома лантана. Теперь не покажется удивительным, что самый большой размер атома у цезия с его отдаленным от ядра s -электроном на внешней оболочке (атом франция должен иметь еще бо́льший радиус, но этот элемент нестабилен и принципиально не может быть получен в виде компактного металла, потому размер его атомов имеет лишь теоретический интерес).

До сих пор речь шла о невозбужденных атомах, поскольку при поглощении энергии излучения внешний электрон может удаляться от ядра все дальше и дальше, занимая орбиталь со все бо́льшим номером. Поэтому, например, атом водорода теоретически может иметь любые размеры. А практически? В 1991 г. в самом известном в мире журнале, посвященном химическому образованию – Journal of Chemical Education (он издается в США), была опубликована статья Д. Б. Кларка. В ней говорилось, что в межзвездных облаках были обнаружены по их спектрам атомы водорода диаметром 0,4 мм (они зафиксированы по спектральному переходу с 253-й на 252-ю орбиталь). Объекты таких размеров вполне можно увидеть невооруженным глазом! Однако Кларк ошибся – он завысил все размеры ровно в 100 раз (об этом сообщил тот же журнал год спустя; возможно, ошибка была связана с неправильным переводом нано– или пикометров в миллиметры). Значит, обнаруженные атомы водорода имеют диаметр «всего лишь» 0,004 мм, и такие атомы, даже если бы они были «твердыми», невооруженным глазом увидеть нельзя – только в микроскоп. Конечно, по атомным меркам и 0,004 мм – величина огромная, она в миллион раз больше диаметра невозбужденного атома водорода. Обсуждаемый же Кларком гипотетический атом водорода «размером с одноцентовую монетку» (ее диаметр 9 мм) с учетом исправлений должен соответствовать переходу с 13044-й на 13043-ю орбиталь, что отвечает частоте излучения 2,96 килогерц или длине волны 100 км. Такие спектральные переходы, даже если бы они происходили, невозможно было бы обнаружить никаким прибором (даже радиотелескопы фиксируют в тысячи раз меньшие длины волн).

Занимательная химия для детей и взрослых

Надпись IBM атомами ксенона

Если же говорить о «вооруженном» глазе, то отдельные атомы можно не только «увидеть» – ими можно даже что-нибудь написать. Например, всемирно известное название компьютерной фирмы IBM, как это сделали ученые, используя сканирующий туннельный микроскоп и 35 самых настоящих атомов ксенона, выстроенных в нужные микроскопические буквы на поверхности никелевого кристалла.

Другой «атомный» рекорд связан с временем жизни радиоактивных нуклидов (напомним, что нуклидом называется совокупность атомов с определенным числом протонов и нейтронов в Надпись IBM ядре; нуклиды одного и того же атомами ксенона элемента называются изотопами; сейчас известно примерно 2400 нуклидов 114 химических элементов, большинство из которых радиоактивны). Судя по справочнику «Физические величины», самый долгоживущий – теллур-128, который и радиоактивным-то назвать трудно: период полураспада этого нуклида (его в природном теллуре 31,7 %) превышает 8 септиллионов (8 · 1024) лет! Для сравнения – нашей Вселенной по оценкам «всего» 10 млрд (1010) лет.

А какие атомы живут меньше всех? В справочнике «Физические величины» для самого короткоживущего изотопа – франция (215Fr) приводится значение 9 · 10–8 с (меньше одной десятимиллионной доли секунды). Следует воздать должное исследователям, сумевшим измерить эту величину. А вот в «Справочнике нуклидов» для самого легкого из известных изотопов кислорода, 12О, приводится удивительное значение: 1,0 · 10–21 с (одна секстиллионная секунды)! Удивительно оно потому, что даже свет, скорость которого составляет 3 · 108 м/с за это время прошел бы всего 3 · 10–13 м = 0,3 пм, что намного меньше размеров атомов и сопоставимо с размером атомного ядра. Значит, за это время частица, которая должна вылететь из ядра при его распаде и скорость которой намного меньше световой, не успеет его даже покинуть. Было бы интересно узнать, как такое ядро может образоваться и как получили такое значение для его времени жизни.

Атомы соединяются между собой химическими связями. Эти связи могут быть сильными и слабыми, короткими и длинными. В результате образуются молекулы, а также ионные, атомные и металлические кристаллы. Между молекулами тоже действуют химические связи. Какая же связь самая прочная? Если рассматривать только одинарные связи, то самой прочной будет связь Т–Т в молекуле тяжелого водорода – трития Т2 (447,2 кДж/моль); далее следуют связи с атомами дейтерия: D–T (445,5 кДж/моль), D–D (443,6 кДж/моль) и H–D (439,6 кДж/моль). Самая слабая (хотя и не намного) в «водородных молекулах» – связь Н–Н (436,2 кДж/моль).

1 ... 54 55 56 57 58 59 60 61 62 ... 85
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?