litbaza книги онлайнРазная литератураГодовые кольца истории - Сергей Георгиевич Смирнов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 54 55 56 57 58 59 60 61 62 ... 69
Перейти на страницу:
эволюции животного царства, свободную от вмешательства божьих сил. Правда, удачной альтернативы этим силам Ламарк не нашел – и вообще, биология слишком сложна для ньютоновского “силового” подхода. Иное дело - физика: в ней электрические и магнитные силы составляют явную альтернативу тяготению. Возможно, они создали Солнечную систему ? В 1821 году – всего через два года после опыта Эрстеда с магнитом и электрическим током эта мысль еще не посетила ни одну ученую голову. Но скоро успехи Фарадея в освоении электричества изменят жизнь физиков и тогда их сознание послушно последует за бытием…

Хорошо, что теперь есть куда следовать - не то что полтора века назад, в ньютоновскую эру. Тогда новорожденное ученое сообщество Европы было очень узким и дружно занималось только математикой и астрономией, с явным преобладанием первой науки. А в ней господствовал Ньютон, и спорить с ним было неповадно: даже Лейбниц не выдержал накала той гонки за интегралами. Кто хотел прославиться помимо Ньютона, тому оставалось быть лишь наблюдателем – при телескопе или при микроскопе, построенном твоими руками. И не смей теоретизировать – а то живые классики убьют тебя презрением!

Этот монархический режим в науке рухнул в 1780-е годы, когда в Европе выросло первое поколение химиков-экспериментаторов. Тридцать лет спустя второе поколение химиков и физиков осознало свою смекалку и эрудицию и не боится теоретизировать в таких областях, куда сам Ньютон не дерзал заглянуть. Вот, Джон Дальтон повторил давнюю гипотезу Демокрита: весь мир состоит из атомов! Но для эллина эти слова были пределом знания; англичанин же уверенно сравнивает веса разных атомов, умеет попробовать их на запах и на вкус. Амедео Авогадро уже выяснил, что в одном литре любого газа содержится одинаковое число атомов или молекул. Правда, не ясно, чему равно это число – или сколько атомов содержится в одном фунте железа. Но все данные для такого расчета у физиков 1821 года уже есть!

Еще в 1814 году (когда Наполеон виртуозно отбивал натиск всей Европы силами французских новобранцев и остатков старой гвардии) в Мюнхене молодой мастер-оптик Йозеф Фраунхофер повторил давний опыт Ньютона: разложил солнечный свет посредством призмы. Оптика у баварца хорошая, человек он внимательный и аккуратный; там, где Ньютон видел лишь неясные штрихи, Фраунхофер различил сотни тонких темных линий, не меняющих свое положение при разных наблюдениях спектра. Кто или что сигналит человеку с Солнца этими линиями ? Возможно, это световые “голоса” отдельных атомов – водорода, кислорода, хлора ?

Если так, то можно повторить давнее рассуждение Пифагора. Он доказал: длина волны звука примерно равна размеру того инструмента, который издает этот звук. Через 23 столетия после Пифагора англичанин Томас Юнг, изучая дифракцию и интерференцию света, доказал: свет, как и звук, состоит из волн. Юнг сумел измерить длину световой волны; несомненно, Фраунхофер услышал об этих измерениях не позже 1817 года. Почему баварец не догадался по этим данным о возможном размере атомов ? Или он догадался – но не посмел высказать свою “безумную” догадку перед ученым миром ?

Второй вариант кажется ближе к истине. Ибо Фраунхофер не учился в университете и (в отличие от самоучки Фарадея) не имел возможности слушать даже популярные лекции первоклассных ученых. Для образованных немцев он был “черная кость”; ему разрешали присутствовать в ученом собрании, но права голоса он не имел и не смел сам отправить письмо прославленному Юнгу. Увы – “республика ученых” в 1820-е годы оставалась весьма аристократичной даже во Франции и Англии. А в Германии после Наполеона царил замшелый абсолютизм…

Видимо, Юнг так и не узнал об измерениях Фраунхофера (который успел обнаружить свои замечательные линии даже в спектрах звезд). В итоге размеры атомов и химический состав звезд оставались не известны еще 40 лет до изобретения спектрального анализа Кирхгофом и Бунзеном.

А бесстрашный вундеркинд Юнг вернулся в 1818 году к своим детским увлечениям. Он решил, наконец, расшифровать египетские иероглифы, полагая, что математический расчет и хватка физика-экспериментатора помогут там, где бессильна эрудиция филолога и историка. В этом Юнг оказался прав: заметка, написанная им для Британской энциклопедии, произвела фурор среди египтологов и позвала на подвиг юного Франсуа Шампольона. В 1822 году он сломал те последние барьеры в чтении Розеттского камня, перед которыми остановился гениальный дилетант Юнг. С этого момента голоса Рамзеса 2 и Тутмеса 3, Джосера и Имхотепа сделались слышны просвещенным европейцам из сорокавековой дали, о которой Наполеон говорил своим солдатам перед битвой с мамлюками у пирамид. Через четверть века египетская добыча просвещенного всемирного грабителя нашла, наконец, полноценное научное применение.

А в царстве Математики в 1821 году назревают события, сравнимые с заочной дуэлью Юнга и Шампольона. Многолетняя абсолютная монархия Карла Гаусса дала трещину, и он сам в этом виноват. Но еще больше виновата эпоха, о которой Гете вскоре скажет: “Лишь тот достоин жизни и свободы, кто каждый день за них идет на бой!” В 20 лет так думал и Гаусс. Он хотел сравниться в славе с Ньютоном – но видел, что в сфере математического анализа это невозможно, и потому взялся за алгебру, где после Ферма не работал ни один первоклассный математик. За четыре года Гаусс совершил чудеса, какие редко выпадают на долю одного ученого.

Отчего некоторые геометрические построения (например, деление произвольного угла на три равные части) не удается выполнить циркулем и линейкой ? В течение 23 веков никто не мог ответить на этот вопрос а Гаусс смог. Дело в том, что циркулем и линейкой можно построить только корень квадратного уравнения по его коэффициентам. Поэтому все числа, достижимые циркулем и линейкой, лежат в числовых полях, размерности которых суть степени двойки. Но синус угла, равного одной трети данного, лежит в поле размерности 3 - и не умещается ни в каком поле размерности 2 , поскольку степень двойки не делится на 3. Вот и все рассуждение: оно замечательно не трудностью, а неожиданностью сопоставлений, которые осеняют только гения – и обычно в молодости.

В 1821 году Гауссу исполнилось 44 года. Нельзя сказать, что возраст открытий миновал; но их темп снизился, поскольку Гаусс (как и Ньютон) не любит читать чужие работы. Все, что ему понадобится для дела, он сам откроет и докажет! Ведь он талантливее любого из своих современников…

Да, это так – но ВСЕ ВМЕСТЕ они сильнее Гаусса, потому что в сотню умных голов приходит больше оригинальных идей, чем в одну гениальную голову. Да и дерзости у молодых побольше. Вот, в 1818 году

1 ... 54 55 56 57 58 59 60 61 62 ... 69
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?