litbaza книги онлайнДомашняяЧудовища доктора Эйнштейна - Крис Импи

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 54 55 56 57 58 59 60 61 62 ... 76
Перейти на страницу:

Развитие технологий расширило электромагнитный спектр для астрономии. Просмотр Вселенной в видимом свете столь же ограничен, что и черно-белое изображение – в сравнении с полноцветным. Пожалуй, лучшую аналогию предлагает музыка: видимый свет – это две соседние клавиши фортепиано, а электромагнитный спектр от радиоволн до гамма-лучей – вся клавиатура из 88 клавиш. Первыми невидимыми волнами в арсенале астрономии стали радиоволны. В конце XIX в. Гульельмо Маркони[315] продемонстрировал, что радиоволны можно передавать и принимать на больших расстояниях, и, как мы уже видели, через 30 лет Карл Янский с помощью простой антенны обнаружил радиоволны, идущие из центра нашей Галактики. В 1920-х гг. два астронома обсерватории Маунт-Вилсон использовали устройство, преобразующее разницу температур в электрический сигнал для регистрации инфракрасного излучения ряда ярких звезд[316], но инфракрасная астрономия стала развиваться только в 1970-х гг. – с появлением более чувствительных детекторов. Наблюдения на невидимых коротких волнах были невозможны до тех пор, пока астрономы не нашли способ обойти излучение, поглощаемое атмосферой Земли. Рентгеновское излучение Солнца в 1949 г. впервые обнаружила геофизическая ракета, а эталонную черную дыру Лебедь Х-1 открыли через 15 лет. Рентгеновская астрономия быстро развивалась в 1970-х гг., когда была запущена серия спутников. Космические гамма-лучи были предсказаны за годы до того, как их увидели спутники в 1990-х гг.[317]

Развитие технологий обеспечило астрономов инструментами для регистрации волн – как очень длинных, до 10 м, так и очень коротких, длиной в тысячную долю размера протона (частоты от 108 до 1027 Гц). Расширение доступного диапазона, ранее превосходившего возможности глаза всего в два раза, а теперь – в десять миллиардов миллиардов раз, показывает, как сильно технологии трансформировали наш взгляд на Вселенную. Не так много источников можно зарегистрировать на всех длинах волн электромагнитного спектра, и все они являются активными галактиками, питаемыми сверхмассивными черными дырами[318].

Все знания о Вселенной мы получаем с помощью телескопов, собирающих излучение. Очень легко забыть о том, что мы полагаемся на косвенную информацию. Вселенная полна материи: крупицы пыли, газовые облака, луны, планеты, звезды, галактики. Мы не видим эту материю воочию, а судим о ее свойствах по взаимодействию с электромагнитным излучением. Химические элементы определяются по характерным спектральным линиям излучения или поглощения. Крупицы пыли проявляют себя, поглощая свет и излучая инфракрасные волны. Луны и планеты видны в отраженном свете ближних звезд. Звезды видимы за счет излучения, являющегося побочным продуктом реакций ядерного синтеза. Галактики картируются при помощи доплеровского смещения спектральных линий их газа и звезд.

Все это – опосредованные наблюдения, и все они охватывают лишь 5 % Вселенной – ее нормальную материю. Темная материя и темная энергия, на долю которых приходится 95 %, до сих пор невидимы для нас, потому что не взаимодействуют с излучением. Астрономические объекты – это актеры, но «сцена» космической пьесы также не видна. Астрономы проследили расширение Вселенной, используя галактики как метки в невидимом пространственно-временном континууме.

Регистрация черных дыр также является косвенной. Самый ближний к черной дыре источник информации для нас – это высокоэнергетическое излучение окружающей ее короны, отражающееся от внутренней части аккреционного диска; затем по рентгеновским спектральным линиям можно установить массу и вращение черной дыры.

Вот бы увидеть «материал» Вселенной без посредничества электромагнитного излучения! Напрямую воспринять прогиб пространственно-временного континуума! Для этого нужны «глаза гравитации» (илл. 52). Их проще всего представить себе на примере телепатии. Головной мозг – это сгусток живой ткани весом около 1,35 кг. При более близком рассмотрении он представляет собой электрохимическую сеть из миллиардов нейронов и триллионов связей между ними. Однако эти факты ничего не говорят о том, где мы храним воспоминания, эмоции, ситуативные мысли и чувство «я». Видеть Вселенную в разрезе гравитации так же увлекательно, как наблюдать мысли и чувства других людей в реальном времени[319].

Чудовища доктора Эйнштейна
Колебания пространственно-временного континуума

Что это за колебания? Давайте вспомним, что в общей теории относительности материя управляет кривизной пространства-времени. Гравитационные волны возникают всякий раз, когда масса меняет его движение или конфигурацию[320]. Волны деформированного пространства излучаются во все стороны от источника так же, как волны, которые расходятся кругами от камня, брошенного в пруд. В теории волны движутся со скоростью света и слабеют по мере удаления от источника. Пространственная деформация чрезвычайно слаба для большей части движущейся материи. Наиболее сильные гравитационные волны возникают вследствие самых ярких событий в космосе: орбитального движения и столкновения черных дыр, орбитального движения и столкновения нейтронных звезд, взрывов сверхновых и бурного рождения самой Вселенной.

1 ... 54 55 56 57 58 59 60 61 62 ... 76
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?