litbaza книги онлайнПсихологияВ поисках памяти - Эрик Кандель

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 55 56 57 58 59 60 61 62 63 ... 126
Перейти на страницу:

Бейли с его коллегой Мэри Чэнь и мы с Кэрью установили, что долговременная память не является простым продолжением кратковременной: при долговременной памяти не только синаптические изменения дольше сохраняются, но также, что более удивительно, изменяется число синапсов, действующих в нейронной цепи. А именно — при долговременном привыкании число пресинаптических связей между сенсорными нейронами и мотонейронами уменьшается, а при долговременной сенсибилизации у сенсорных нейронов вырастают новые связи, действующие, пока сохраняется память (рис. 15–1). В обоих случаях в мотонейронах происходит ряд параллельных изменений.

В поисках памяти

15–1. Анатомические изменения, сопровождающие долговременную память.

У этих анатомических изменений есть несколько проявлений. Бейли и Чэнь установили, что у одного сенсорного нейрона приблизительно 1300 пресинаптических окончаний, соединяющих его с примерно 25 разными клетками-мишенями — мотонейронами, возбуждающими интернейронами и тормозными интернейронами. Из этих 1300 пресинаптических окончаний лишь примерно у 40 есть активные синапсы, и только в этих синапсах имеется аппарат для выделения нейромедиатора. Остальные нейроны бездействуют. При долговременной сенсибилизации число синаптических окончаний увеличивается более чем вдвое (с 1300 до 2700), а доля активных синапсов возрастает с 40 % до 60 %. Кроме того, у мотонейрона тоже образуются дополнительные отростки, с которыми связываются некоторые новые окончания сенсорных нейронов. По мере того как память слабеет, а реакция возвращается к норме, число пресинаптических окончаний снижается с 2700 до примерно 1500, что не намного больше их первоначального количества. По-видимому, с этим остаточным явлением и связан открытый Эббингаузом факт, что при повторном выполнении того же задания животное может обучаться быстрее. При долговременном привыкании общее число пресинаптических окончаний, напротив, снижается с 1300 примерно до 850, а число активных окончаний — с 500 примерно до 100, что приводит к почти полному выключению синаптической передачи (рис. 15–1).

Таким образом, на примере аплизии мы впервые убедились, что число синапсов в нервной системе непостоянно — оно изменяется в ходе обучения! Более того, долговременная память сохраняется, пока поддерживаются связанные с ней анатомические изменения.

Эти открытия впервые позволили проверить две альтернативные теории хранения памяти. И обе оказались по-своему правильными. В соответствии с теорией одного процесса при привыкании и сенсибилизации в одном и том же месте действительно может возникать и кратковременная, и долговременная память. Более того, в обоих случаях происходят изменения синаптической силы. Но вместе с тем в соответствии с теорией двух процессов в основе этих кратковременных и долговременных изменений лежат принципиально разные механизмы. Кратковременная память связана с изменениями функций синапсов — усилением или ослаблением уже существующих связей, а долговременная требует анатомических изменений. Многократно вызываемая (повторяемая) сенсибилизация заставляет нейроны отращивать новые окончания, обеспечивая долговременную память, а многократно вызываемое привыкание заставляет нейроны втягивать уже имеющиеся у них окончания. Таким образом, вызывая глубокие структурные изменения, обучение может делать неактивные синапсы активными и наоборот.

Чтобы от памяти была польза, необходимо извлекать из нее то, что в ней записано. Извлечение информации требует соответствующих ключевых сигналов, которые животное может ассоциировать с приобретенным в ходе обучения опытом. Сигналы могут быть внешними, такими как сенсорные раздражители при привыкании, сенсибилизации и классических условных рефлексах, или внутренними — вызываемыми мыслями или побуждениями. В случае с рефлексом втягивания жабр у аплизии извлечение информации из памяти происходит благодаря внешнему сигналу, а именно прикосновению к сифону, которое и вызывает рефлекторную реакцию. Информацию об этом раздражителе извлекают из памяти те же сенсорные нейроны и мотонейроны, которые активировались при выработке этого рефлекса. Но поскольку сила и число синаптических связей между нейронами видоизменились в ходе обучения, потенциал действия, вызываемый прикосновением к сифону, достигая пресинаптического окончания, «считывает» новое состояние синапса, и извлеченная из памяти информация обеспечивает усиленную реакцию на раздражитель.

В случае долговременной памяти, как и в случае кратковременной, число изменившихся синаптических связей может оказаться достаточно большим, чтобы перенастроить нейронную цепь, но на этот раз на анатомическом уровне. К примеру, до обучения воздействие раздражителя на сенсорный нейрон аплизии может оказаться достаточно сильным, чтобы запустить потенциалы действия в мотонейронах, ведущих к жабрам, но недостаточным для запуска потенциалов действия в мотонейронах, ведущих к чернильной железе. Повторное обучение усиливает синаптические связи не только между сенсорным нейроном и мотонейронами жабр, но и между сенсорным нейроном и мотонейронами чернильной железы. После обучения воздействие раздражителя на сенсорный нейрон извлекает из памяти информацию об усиленной реакции, и это приводит к тому, что и в мотонейронах жабр, и в мотонейронах железы запускаются потенциалы действия и наряду с втягиванием жабр происходит выделение чернильной жидкости. Тем самым меняется характер поведения аплизии. Прикосновение к сифону вызывает изменение не только величины поведенческой реакции (амплитуды втягивания жабр), но и поведенческого репертуара животного.

Результаты исследований, показавшие, что нервная система аплизии физически изменяется под действием опыта, заставили нас задуматься, происходит ли то же самое и с нервной системой приматов. Изменяется ли под действием опыта человеческий мозг?

В пятидесятых годах, когда я был студентом-медиком, нас учили, что карта соматосенсорной коры, открытая Уэйдом Маршаллом, остается неизменной на протяжении всей жизни. Теперь мы знаем, что это не так. Она претерпевает постоянные изменения, определяемые опытом. Особенно подробно этот вопрос был освещен в двух исследованиях, проведенных в девяностые годы.

Первое провел Майкл Мерцених из Калифорнийского университета в Сан-Франциско. Он открыл, что у разных особей обезьян сенсорные карты коры существенно отличаются в деталях. Например, у некоторых из них кисти рук представлены в коре намного более обширными областями, чем у других. В первой работе по этому вопросу Мерцених не отделял действие опыта от генетической предрасположенности, поэтому не исключена была возможность того, что эти различия генетически предопределены.

Затем Мерцених провел дополнительные эксперименты, чтобы определить сравнительный вклад генов и опыта в эти различия. Он обучал обезьян добывать гранулы корма, прикасаясь указательным, средним и безымянным пальцами к вращающемуся диску. После нескольких месяцев тренировок области коры, связанные с этими пальцами, особенно с их кончиками, которыми обезьяна прикасалась к диску, существенно расширились (рис. 15–2). Одновременно увеличилась и тактильная чувствительность пальцев. Другие исследования показали, что тренировка различения цветов или форм тоже приводит к изменениям в анатомии мозга и улучшает навыки восприятия.

1 ... 55 56 57 58 59 60 61 62 63 ... 126
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?