Шрифт:
Интервал:
Закладка:
«…могучая научная фантазия и, как говорят итальянцы, spreguidicatezza (беспринципность) – способность признавать возможным даже самый невероятный и странный факт. Именно благодаря этим качествам Фредерику Жолио в сотрудничестве с Ирен Кюри, критический ум которой иногда служил здоровым антиподом энтузиазму мужа, удалось открыть явление искусственной радиоактивности (отмеченное Нобелевской премией), несмотря на то, что в их распоряжении имелись менее значительные экспериментальные средства, чем те, которыми располагали ученые Америки и Англии. Можно даже сказать, что в Америке и Англии явление искусственной радиоактивности наверняка наблюдалось, но не было открыто из-за отсутствия этой способности, которой обладал Жолио, – считать возможным самое невероятное».
Я думаю, что Бруно не случайно выделяет эту важную особенность физика-экспериментатора – непредвзятость, способность считать возможным самое невероятное. И, как следствие, с уважением и вниманием относиться к любым экспериментальным результатам. Особенно если они не сходятся с твоими ожиданиями. История с зависимостью результата от стола, на котором проводились измерения, стала хорошим уроком для молодого ученого. Нобелевское открытие было сделано именно благодаря внимательному отношению и желанию разобраться в любых мелочах поведения экспериментальной установки. Общение с Жолио закрепило эту практику. В дальнейшем мы увидим много проявлений этого качества Бруно. И в истории с первым нейтринным экспериментом в СССР, и в ситуации с реакциями Понтекорво.
Что касается человеческих качеств, то Бруно отмечает: «Одной из самых замечательных черт Жолио был какой-то изумительный дар поднимать дух каждого, кто обращался к нему: даже самые обескураженные неудачами сотрудники после разговора с Жолио уходили от него уверенными и полными надежд. Жолио завоевывал сердце всех, кто работал с ним. Как-то я заболел оттого, что вдохнул пары ртути во время одного из опытов, проводимых в лаборатории. Жолио добился того, чтобы меня лечили в знаменитом институте Пастера, куда не так легко попасть» [24].
Жолио любил спорт, горные лыжи, рыбную ловлю, парусные гонки. Один из его сотрудников открыл школу джиу-джитсу. Чтобы помочь ему привлечь клиентов, Жолио стал тоже заниматься джиу-джитсу. Сразу же пошли рекламные статьи и фотографии, что лауреат Нобелевской премии не мог бы никогда чувствовать себя в такой превосходной форме, если бы не занимался джиу-джитсу.
Очень любил теннис. «Играл он хорошо – на уровне примерно советских игроков первого разряда. Надо сказать, что и к этому виду спорта он относился весьма ревниво, и ему совсем не нравилось проигрывать…» [24] – Бруно тактично умалчивает, кому проигрывал Жолио.
«Семья Жолио-Кюри была необычайно простой, приветливой, исключительно дружной, хотя (а может быть, как раз потому что) Фредерик и Ирен были очень разные по характеру люди. Она – застенчивая, немногословная, он – мастер рассказывать разные истории, не прочь «послушать себя», типичный француз. Мне приходит на память такая сцена. На одном из семинаров в лаборатории Жолио его жена Ирен сидит рядом с ним, обеспокоенная здоровьем мужа, который непрерывно курит. Она несколько раз выхватывает у него изо рта сигарету и выбрасывает ее, а он как будто невозмутимо закуривает новую. Это продолжается до тех пор, пока Фредерик, полный гнева, не пересаживается на другое место» [24].
В 1990 году Бруно дал интервью итальянскому историку науки Р. Вергара Каффарелли, в котором он сравнивает Жолио-Кюри с Ферми [25].
«Жолио-Кюри сильно отличался от Ферми – но не пишете об этом – как физик он был значительно слабее, но это был человек, который заражал энтузиазмом молодежь, чем Ферми особо не занимался».
В этой маленькой ремарке – «но не пишите об этом» – тоже отражается характер Бруно. Он был исключительно тактичным и (почти забытое сейчас слово) благородным человеком. Однако Каффарелли все равно привел эту характеристику Жолио в полном объеме.
5. Изомерия
После того как в 1935 г. Жолио получил Нобелевскую премию по химии, он открыл кафедру ядерной химии в Коллеж де Франс. В новую лабораторию он набрал сотрудников из разных стран, включая австрийца Ханса фон Халбана, русского Льва (Лео) Коварского, а также французов Пьера Оже и Бертрана Голдшмидта. Эти коллеги Бруно в будущем сыграют большую роль в его жизни. С началом Второй мировой войны они разлучатся, судьба сведет их вместе через несколько лет по другую сторону Атлантического океана, в Канаде. Однако в 1936 г. они работают в одной лаборатории, но над разными проблемами: группа Жолио интенсивно занимается экспериментами для создания атомной бомбы, а Бруно получает от Жолио тему по ядерной изомерии – чисто фундаментальную задачу ядерной физики. Впоследствии Бруно не раз говорил журналистам, что он никогда не работал над атомной бомбой: ни на Западе, ни на Востоке, ни в Китае. И во Франции он действительно не занимался этой проблематикой. Это делали его коллеги.
Сейчас сочетание «радиоактивные изотопы» стало нам привычным, школа должна была нас научить, что изотопы – это ядра с одинаковым зарядом, то есть с одинаковым числом протонов, но с разным числом нейтронов. Массы изотопов – разные. А есть еще изомеры – ядра с одинаковой массой, у них одинаковое число и протонов, и нейтронов. Удивительно, что тем не менее ядерные системы с одинаковым число протонов и нейтронов могут отличаться друг от друга. Например, иметь разные периоды радиоактивного распада или существенно разное время жизни.
Один из первых изомеров был открыт группой И. В. Курчатова в Ленинграде. Курчатов вслед за Жолио-Кюри и Ферми изучал искусственную радиоактивность, наводимую нейтронами в разных веществах. В 1935 г. он обнаружил, что при облучении 79Br нейтронами образуется изотоп 80Br, имеющий два периода полураспада 17,7 минуты и 4,4 часа, что соответствовало бета-распадам из основного и изомерного состояния. Но почему ядра с одинаковым набором протонов и нейтронов ведут себя по-разному – это оставалось загадкой.
Для объяснения феномена изомерии в 1936 г. К. Вайцзеккер предположил, что ядра-изомеры образуются в разных энергетических состояниях: одно – в основном, а другое – в возбужденном. Если угловые моменты основного и возбужденного состояния сильно отличаются (на несколько единиц), то переход из возбужденного состояния в основное путем излучения γ-квантов оказывается сильно подавленным. Поэтому радиоактивный бета-распад происходит либо из основного состояния с одной вероятностью, либо из возбужденного состояния – с другой вероятностью. Поэтому мы видим испускание электронов с двумя различными временами полураспада.
Для подтверждения этой гипотезы не хватало одного: надо было бы напрямую обнаружить переходы из возбужденного состояния в основное. То есть увидеть γ-кванты с фиксированной энергией перехода. Основная трудность состояла в том, что вероятность таких переходов была достаточно мала.
Как бы стал решать эту задачу среднестатистический экспериментатор? Вероятность гамма-перехода мала – значит, надо взять больше гамма-детекторов, увеличить время набора статистики и т. д. Бруно же решил эту задачу парадоксально: не надо смотреть за гамма-квантами! Надо искать электроны внутренней конверсии.
Дело в том, что переход ядра из возбужденного состояния в основное