Шрифт:
Интервал:
Закладка:
Рис. 2.7.В момент t = 0 электрон движется по некоторой траектории. В момент t = t´ мы наблюдаем его наименее возмущающим способом, позволяя ему взаимодействовать с одиночной частицей света — фотоном. Взаимодействие электрона с фотоном вызывает возмущение, которым нельзя пренебречь. Невозможно использовать причинность для предсказания того, что случится после наблюдения
В отличие от классической механики, как только квантовая система подвергается наблюдению, становится невозможно сказать, какой результат даст следующее наблюдение. Этот недостаток точности отличается от того, что возникает при столкновении птицы с камнем (см. рис. 2.6). В случае птицы и камня принципиально возможно, хотя и трудно, предсказать результат следующего наблюдения. Нам понадобится знать все свойства птицы и камня, а также все подробности, касающиеся того, как птица сталкивается с камнем (например, скорость и массу птицы и камня, а также угол, под которым происходит их столкновение).
В случае электрона и фотона нельзя точно предсказать, каким будет результат следующего наблюдения. Возможности квантовой теории ограничиваются предсказанием вероятности получения конкретного результата. В примере с котами Шрёдингера при вскрытии ящика обнаруживался либо живой, либо мёртвый кот. И не было способа предсказать, каким он будет. Вскрытие ящика (наблюдение кота) переводит кота из своего рода смешанного состояния живого и мёртвого в одно из чистых состояний — либо живое, либо мёртвое. При вскрытии множества ящиков вероятность обнаружить живого кота составляла 50 %, но не было способа предсказать, что случится при вскрытии конкретного ящика (при единичном измерении).
Эксперимент с котом нельзя реализовать физически, а значит, он не является подлинной квантовомеханической задачей. Реальная физическая задача, подобная задаче с котом, обсуждается далее. Задача с котом предназначалась для первоначального введения идеи о том, что наблюдение способно менять систему и что лишь вероятность может быть определена из серии экспериментов. Для реальных систем, которые являются абсолютно малыми, квантовая механика — это теория, позволяющая вычислить и понять распределение вероятности, получаемое при выполнении измерений на множестве одинаково приготовленных систем. Каким образом возникают квантовомеханические распределения вероятности и как представлять себе природу возмущений, которые сопутствуют измерениям абсолютно малых систем, вы узнаете в следующих главах.
Для того чтобы разобраться в природе неустранимых возмущений, которые сопутствуют измерению, и понять, что можно, а что нельзя измерить у абсолютно малой квантовомеханической системы, необходимо сначала потратить некоторое время на обсуждение классических волн и классического описания света. В начале XX века был проведён ряд экспериментов, результаты которых не удавалось объяснить с помощью классической механики. Самый первый из них был связан со светом. Тем не менее сначала мы обсудим эксперимент, который, как может показаться, демонстрирует, что классические идеи прекрасно работают. Далее, в главе 4, мы расскажем об одном из экспериментов, показывающих, что описание с позиций классической механики не может быть корректным и, более того, что классическая реинтерпретация эксперимента, которая кажется работоспособной, на самом деле никуда не годится. И наконец, будет дан корректный анализ эксперимента со светом, основанный на квантовых идеях, что вернёт нас к котам Шрёдингера.
Существует много видов классических волн: волны на воде, звуковые волны, световые (электромагнитные) волны. Все волны имеют ряд общих характеристик, таких как амплитуда, длина волны, скорость и направление распространения (направление, в котором движется волна). На рис. 3.1 показана волна, движущаяся в направлении x. Амплитуда волны — это «расстояние» между её положительным и отрицательным пиками по направлению сверху вниз. Длина волны — это расстояние вдоль направления её распространения между двумя положительными или отрицательными пиками, то есть это расстояние, через которое волна повторяет саму себя. Если, оседлав волну, вы сместитесь на любое целое число длин волн вперёд или назад вдоль неё, то для вас ничего не изменится. Любая волна движется с определённой скоростью V.
Скорость волны зависит от её типа, и эта характеристика требует небольшого обсуждения. Представьте себе, что стоите рядом с волной, изображённой на рис. 3.1, но волна эта настолько протяжённая, что её начало и конец вам не видны. Тем не менее вы всё равно можете определить её скорость с помощью секундомера. Засеките время, когда мимо вас пройдёт положительный пик, и остановите отсчёт, когда с вами поравняется следующий положительный пик. Теперь у вас достаточно информации для определения скорости волны. Волна проходит расстояние d, равное одной длине волны, за время t. Это расстояние можно получить, умножив скорость на время: d=V∙t. (Если вы едете в автомобиле со скоростью V = 60 км/ч и ваша поездка занимает время t=1 час, то вы покроете расстояние d=60 км.) Если взять расстояние, равное одной длине волны, и разделить его на время, которое требуется на прохождение этого расстояния, то получится скорость: V=d/t. Наблюдение за проходящей мимо волной подобно наблюдению за движением очень длинного поезда. Вы видите, как один за другим следуют товарные вагоны. Если знать длину вагона и время, за которое он вагон проходит мимо вас, то можно определить скорость поезда.
Рис. 3.1. Волна, движущаяся в направлении x. Прямая представляет нулевую амплитуду волны. Волна испытывает положительные и отрицательные колебания относительно нуля. Расстояние между пиками — это длина волны. Волна движется вдоль оси x со скоростью V
Другая важная характеристика волн, связанная с их скоростью и длиной, — это частота. Учёные любят использовать греческие буквы для обозначения величин, поскольку латинские буквы в основном уже имеют общепринятое применение. Нет особых причин обозначать скорость буквой V, расстояние — d, а время — t, но обычно используются именно эти буквы. Поэтому мы обращаемся к греческому алфавиту. Обычно для обозначения длины волны используется буква λ (лямбда), а для частоты волны — ν (ню). Для понимания смысла частоты вновь рассмотрим идущий мимо товарный поезд. Если подсчитать, сколько вагонов проходит мимо за определённый отрезок времени, вы определите частоту вагонов. Если в минуту проходит 10 вагонов, то их частота составляет 10 в минуту, что часто записывается в виде 10 мин−1. Частота волны определяется по числу циклов (пиков), отмечаемых в месте наблюдения за секунду. Если за секунду (сек) отмечено 1000 циклов, частота составляет ν=1000 сек−1 = 1000 Гц. Для числа событий в секунду есть собственная единица — герц (Гц), названная в честь Густава Людвига Герца (1887–1975), который в 1925 году разделил с Джеймсом Франком Нобелевскую премию по физике