Шрифт:
Интервал:
Закладка:
Решения Паскаля жюри признало наилучшими, и в декабре 1658 года он сочинил “Письмо Амоса Деттонвилля к господину де Каркави”, в котором изложил свои результаты и приводящие к ним методы. В следующем году оно пополнилось еще несколькими трактатами, и в печати появляются “Письма Амоса Деттонвилля, содержащие некоторые из его открытий в области геометрии”.
О том, что суд жюри был действительно справедливым, свидетельствуют сами результаты и методы Паскаля, всеобщее одобрение и восхищение, которое они вызвали среди европейских ученых. Так, например, в феврале 1659 года Гюйгенс писал Блезу, что хотел бы называться его учеником в науке, где Паскаль продемонстрировал свое явное превосходство над многими. А в июне того же года, характеризуя “Письмо к Каркави”, Гюйгенс сообщал Слюзу: “Работа выполнена столь тонко, что к ней нельзя ничего добавить”. Действительно, отвечал Слюз знаменитому голландцу, “нельзя отрицать, что прекрасные, изобретательные и тонкие идеи, содержащиеся в этой книге, могут продвинуть вперед геометрию”.
И Слюз был прав. Приемы и обобщения анализа бесконечно малых, которые Паскаль использовал в своих трудах по циклоиде, вели к изобретению дифференциального и интегрального исчисления.
Оно открыло целую эпоху в развитии естествознания и стало применяться не только во всех математических дисциплинах, но и повлияло на создание ряда новых разделов математики. Благодаря дифференциальному и интегральному исчислению математика стала гораздо шире проникать в область естественных наук и техники. Таким образом, в истории науки XVII века открытие этого исчисления было важнейшим событием, ставшим возможным на основе методов исчисления бесконечно малых.
В работах, связанных с циклоидой, Паскаль сделал шаг вперед по сравнению со своими предшественниками на пути дальнейшего совершенствования и обобщения методов интегрирования. Он преобразовал понятие совокупности Кавальери в понятие суммы. При этом, как пишет известный немецкий историк математики Вилейнтнер, Паскаль проводил отчетливое различие между неделимыми и элементарными частями и “существенно более общим образом толковал понятие равенства фигур, чем это позволяло употребительное до того определение Евклида. Именно, он считал равными две фигуры, если различие между ними меньше любой данной величины. Паскаль с полной ясностью проник в существо интеграционного процесса, заметив, что всякое интегрирование приводится к определению некоторых арифметических сумм. Паскаль подошел к определению интеграла ближе всех своих современников”.
Применяя метод неделимых к различным величинам, преобразуя одни виды суммирования в другие, Паскаль в геометрической форме получил фундаментальные результаты, относящиеся к так называемым криволинейным и двойным интегралам, с помощью наглядных конкретных примеров и ясных доказательств, искусного использования приемов современной ему и античной математики упорядочил многие интеграционные проблемы, освободив их от нечетких и приблизительных решений. До прямого открытия интегрального исчисления Паскалю оставалось сделать лишь шаг – определить формальные операции интегрирования и дать его особый вычислительный алгоритм. Но Паскаль этого шага не сделал. Как и прежде, помешали его “геометризм” и антиалгебраическая настроенность, использование прямых конкретных методов. Поэтому, славу первооткрывателей интегрального и дифференциального исчисления делят между собой Ньютон и Лейбниц, хотя некоторые исследователи и причисляют Паскаля к ним, исходя из возможности легкого перевода исключительно геометрических рассуждений Блеза на абстрактный язык анализа бесконечно малых.
Научные открытия, сделанные Паскалем весенней ночью, – последний всплеск его математической фантазии, а радость победы вскоре омрачается горечью угрызений совести. Блез искренне мучается оттого, что неистребимое libido sciendi, а вместе с ним и опьяняющее libido dominandi вновь проснулись в его душе. Действительно, в конкурсе с циклоидой горделивое тщеславие и нетерпимость к слабостям соперников опять выявляются в его поведении, как уже случалось в годы молодости. Конкурс был организован с намерением показать, что ни один европейский математик не способен соревноваться с Паскалем, и потому Блез так неумолим в отношении краткости его сроков, резко и нетерпеливо реагирует на всякие возражения, подчеркивает достоинство своих трудов и свысока относится к попыткам конкурентов.
Задумываясь над всем этим, он теперь начинает догадываться, что путь к нравственному совершенству не имеет остановок, где можно передохнуть или даже слегка развлечься, что каждый шаг на этом пути в чем-то сложнее предыдущего и что необходимы постоянные новые усилия, чтобы продолжить начатое.
Такому устремлению способствует и новый кризис в состоянии здоровья Паскаля, начавшийся зимой 1659 года. По словам Каркави, Блез находится в изнеможении всех своих сил и любое занятие, требующее хоть малейшего внимания, причиняет ему невероятную боль. Лечение бульонами и молоком ослицы, которое прописали врачи, не помогает, и больной даже не может прочитать присланную ему Слюзом научную брошюру. Когда родные и близкие принимаются жалеть его, Паскаль отвечает, что жалобы тут ни к чему, что он рад своим страданиям и боится вылечиться, что хорошо знает опасность здоровья и “преимущества” болезни: “с ее помощью мы пребываем в таком положении, в каком должны бы находиться всегда – в страдании, горестях, в лишении всех благ и чувственных удовольствий, без всяких страстей и честолюбия, без скупости и в постоянном ожидании смерти”.
Жильберта вспоминала, что брат так стойко переносил любые недомогания, как мало кто был способен это делать. Это отношение к собственным страданиям, угрызения совести, новый подъем религиозной ревностности в душе Паскаля необыкновенно ярко проявляются в его покаянном “Молитвенном размышлении об обращении во благо болезней”, чрезвычайно важном для понимания последних лет жизни Блеза.
Вот некоторые фрагменты из него:
“Господи… Ты даровал мне здоровье на служение Тебе, а я истратил его для суетных целей. Теперь Ты посылаешь мне болезнь, чтобы исправить меня: не допусти же меня прогневать Тебя моим нетерпением. Я злоупотребил своим здоровьем, и Ты справедливо покарал меня. Помоги мне извлечь должную пользу из Твоего наказания… Если сердце мое было полно привязанности к миру, пока в нем была некоторая сила, – уничтожь эту силу для моего спасения и сделай меня неспособным наслаждаться миром: ослабив ли мое тело или