Шрифт:
Интервал:
Закладка:
Обоняние – это система решения задачи с очень непостоянными стимулами, непредсказуемыми как для внешнего источника, так и для структурных перестановок. Для развития идеи предсказательного мозга в рамках современной когнитивной нейробиологии очень важно понимать, как мозг обеспечивает гибкое поведение, соответствующее такому хаотичному миру. Что именно обоняние может сообщить о конкретных клеточных механизмах в основе функционирования предсказательного мозга?
Измерение мира
Представьте на минуту, что вы воспринимаете мир так, как это делает ваш мозг. Будучи мозгом, вы не можете идентифицировать запах иначе, чем через происходящее в носу. Все, что вы «видите» (более подходящего слова не найти) – это сигналы от рецепторов и активность нейронов на нескольких стадиях их обработки. Когда, как быстро и в каком порядке поступают сигналы, судя по всему, имеет большее значение, чем откуда они поступают. Это заставляет изменить точку зрения. Вместо того чтобы концентрироваться на запахах как неизменных матрицах, следует рассмотреть принципы работы нейронов, с помощью которых обонятельные сигналы расцениваются как запахи и разделяются на более или менее стандартные воспринимаемые образы. Как мы обсуждали в предыдущих главах, обработка обонятельных сигналов основана на оценке частоты встречаемости и новизны непредсказуемой и постоянно изменяющейся информации из нашего химического окружения. В этой главе мы поговорим о том, что для работы с запахами мозг должен выступать в роли некоего измерительного аппарата.
Что делает ваш мозг, когда предсказывает будущее? Он оценивает окружающее пространство во все стороны от вас. Например, как далеко или близко от вас какой-то предмет? Движется ли он, и если движется, то медленно или быстро? Меняются ли со временем его свойства, или он остается сравнительно стабильным? Опасен он или нет? И так далее. Это не свойства самого объекта или среды как таковых. Скорее это суждения о воздействии на воспринимающий организм (см. главы 3–5). Так механизмы кодирования смесей запахов требуют гибкой интеграции и классификации нерегулярных сигналов в различном поведенческом контексте.
Эта идея несовместима с представлением о стереотипной топографической карте, на которой смысл запаха отображен в виде фиксированной картины активации нейронов. Активность нейронов, кодирующая смеси ароматов, запускается поведением рецепторов и не позволяет получить четкую карту, связывающую стимул и ответ. Обонятельные стимулы нельзя зафиксировать на аддитивной шкале, поскольку их кодирование и вычисление не аддитивные – ни в луковице, ни тем более в обонятельной коре.
Альтернативная гипотеза гласит, что обонятельные сигналы отражают изменение сигналов в окружающей среде по отношению к ожидаемым, полученным «сверху». Будучи соотношением (мы уже говорили об этом в главе 6), запахи являются интерпретацией сочетаний и величин сигналов.
Для измерения окружающего пространства мозгу нужен способ структуризации и калибровки входящих сигналов. Для этого есть несколько механизмов на разных этапах обработки сигнала. Мы видели, что на периферии выборочная адаптация служит для калибровки системы, чтобы оценивать изменения в химическом окружении для некоторого фона. На уровне мозга для измерительной активности не нужна пространственная карта, хотя она может формироваться и использоваться в определенных целях или в определенные моменты. Мы видим, что в обонятельной системе информация, содержащаяся в стимуле, сначала распадается на несколько фрагментов, которые затем комбинируются и сравниваются между собой для создания общего сенсорного образа. Теперь мы более подробно рассмотрим механизмы обработки сигналов в центральной нервной системе, которые осуществляют структурирование и управляют этим распределением, а также интегрируют обонятельные сигналы в ходе различных параллельных процессов.
Кодирование запахов происходит в динамическом формате. Обонятельная система может приписывать разные значения одному и тому же стимулу. Вслед за Фриманом нейробиолог Жиль Лоран из Института Макса Планка во Франкфурте считает, что это важнейший элемент, который нужно учитывать при моделировании кодирования запахов, и приводит доказательства в пользу сетевых моделей вместо дискретных хемотопических представлений. Для кодирования многомерных сигналов в изменяющихся условиях принятия решений система использует два основных процесса: формирование обширного кодирующего пространства и широкое распределение нейронных сигналов[345].
Во-первых, кодирующее пространство обонятельной системы достаточно объемное. В предыдущих главах мы говорили о том, что химический стимул 1) сначала разбивается на части за счет комбинаторного кодирования на уровне рецепторов (см. глава 6), а затем 2) дополнительно изменяется («декоррелируется») в процессах ингибирования/активации в микросетях луковицы (см. глава 7). Декорреляция – это временной процесс, протекающий за счет локальной обработки сигналов молекулярными механизмами вставочных нейронов. Каждый декоррелированный обонятельный сигнал характеризует временную картину активации, на основе которой происходит его объединение с другими сигналами в сходных, синхронных состояниях (вскоре мы поговорим о клеточных механизмах этих процессов). Таким образом, пространственно-временная активность луковицы должна рассматриваться как отражение динамики кодирующего пространства, а не фиксированного представления запахов, поскольку запахам могут соответствовать разные значения и, следовательно, картины активности.
Во-вторых, декоррелированные сигналы далее широко распределяются и становятся разреженными в обонятельной коре. Такое широкое распределение позволяет обонятельным сигналам интегрироваться и синхронизироваться с параллельными процессами в соседних участках коры (для временной корреляции с вербальными сигналами и сигналами в других модальностях). Разреженное кодирование в этом контексте ослабляет перекрывание сложных нейронных картин многомерных стимулов. В частности, рассредоточенные картины активности способствуют быстрому временному формированию многослойных ассоциаций специфических обонятельных сигналов с разным значением и разным обусловленным поведенческим ответом (как у кроликов Фримана). Если бы сигналы на уровне нейронов были слишком детализированы, было бы очень сложно связывать их с другими сигналами и воспроизводить в будущем. Рассредоточенные сигналы менее детализированы, но быстрее обрабатываются и распознаются (эта идея напоминает о пределе Лэйнга: анализ сложных обонятельных образов в качестве «гештальтов» ограничен по количеству компонентов; см. главы 6 и 9).
Ключ к динамическим вычислениям обонятельных образов – во временном, а не топографическом подходе к обработке сигнала. В таком случае правильнее сравнить процесс осмысления мозгом изменяющихся фрагментов информации с измерением, а не с проецированием на карту. Концепция измерения заставляет также изменить представление об отображении стимула. Мозг выдает не фиксированные изображения предметов (картинка X для запаха X), а динамически закодированные картины, связывающие входящую информацию с другими ответами (картинка X сформировалась для обозначения перцептивного ответа в состоянии X).
Какая структурная организация нейронов и какие клеточные механизмы позволяют обонятельному мозгу получать сигнал и обрабатывать в таком ключе, чтобы