Шрифт:
Интервал:
Закладка:
Волна, связанная с фотоном, может колебаться в любом направлении, перпендикулярном ее направлению движения (рис. 57). На самом деле существует бесконечное число таких направлений. Вообразите окружность, перпендикулярную линии движения. Можно убедиться, что волна способна осциллировать в любом радиальном направлении (от центра окружности наружу), и таких направлений бесконечно много.
Но при физическом описании этих колебаний нам нужны только два независимых взаимно перпендикулярных колебания, что позволяет учесть все возможности. На языке физики эти колебания называются поперечными поляризациями. Представьте, что вы ввели оси координат x и у с началом в центре окружности. Какую бы линию вы не провели из центра окружности, она всегда пересечет окружность в определенном месте, соответствующем определенной паре значений x и у, поэтому это место может быть однозначно задано всего лишь двумя координатами. Аналогично (не вдаваясь в детали того, как это получается), хотя существует бесконечное число направлений, перпендикулярных направлению распространения волны, все эти направления можно получить из комбинаций световых пучков, поляризованных в любых двух взаимно перпендикулярных направлениях.
Важно то, что в принципе могло бы существовать и третье направление поляризации, когда колебания происходят вдоль направления движения волны (если такая поляризация существует, ее называют продольной поляризацией). Например, так распространяется звуковая волна. Однако у фотона такой поляризации не существует. В природе существуют только две из трех возможных независимых направлений поляризаций. Фотон никогда не совершает колебаний вдоль направления своего движения или в направлении времени; он совершает колебания только в направлениях, перпендикулярных направлению своего движения.
Даже если бы мы не знали из независимых теоретических соображений, что продольная поляризация невозможна, квантовая теория поля требует исключить ее. Если бы физику пришлось делать вычисления, используя теорию взаимодействий, ошибочно включающую все три направления поляризации, предсказания теории не имели бы смысла. Например, такая теория предсказывала бы абсурдно большие вероятности взаимодействий калибровочных бозонов. А именно, она бы предсказывала существование калибровочных бозонов, взаимодействующих чаще, чем всегда, т. е. более 100 % времени. Любая теория, делающая такие бессмысленные предсказания, очевидным образом неверна, так что и квантовая теория, и сама природа ясно указывают, что неперпендикулярная поляризация не существует.
К сожалению, простейшая теория взаимодействий, которую могут сформулировать физики, включает это фиктивное направление поляризации. Это и не удивительно, так как теория, которая должна работать для каждого фотона, не может содержать информацию об одном конкретном фотоне, распространяющемся в конкретном направлении. А без такой информации специальная теория относительности не выделит никакое направление. В теории, которая сохраняет симметрии специальной теории относительности (включая вращательную симметрию), нужно иметь три, а не два направления, чтобы описать все направления, вдоль которых может колебаться фотон. При таком описании фотон может колебаться вдоль любого направления в пространстве.
Но мы знаем, что это неверно. Для любого конкретного фотона его направление движения выделено и колебания в этом направлении запрещены. Но вы же не собираетесь строить отдельную теорию для каждого отдельного фотона со своим отдельным направлением движения. Вам нужна теория, работающая вне зависимости от того, куда движется фотон. Хотя можно попробовать построить теорию, вообще не содержащую фиктивного направления поляризации, было бы значительно проще и яснее сохранить вращательную симметрию и исключить плохую поляризацию как-нибудь иначе. Физики, стремящиеся к простоте, заметили, что квантовая теория поля работает хорошо, если включить в нее фиктивную продольную поляризацию, но добавить дополнительное слагаемое, чтобы отфильтровать хорошие, физически приемлемые предсказания от плохих.
Именно в этом месте в игру вступают внутренние симметрии. Роль внутренних симметрий в теории взаимодействий состоит в устранении противоречий, которые могут создать нежелательные поляризации, не расплачиваясь за это симметриями специальной теории относительности. Введение внутренних симметрий — это простейший путь отсеять поляризацию вдоль направления движения, которую исключают независимые теоретические соображения и экспериментальные наблюдения. Внутренние симметрии делят поляризации на хорошие и плохие, т. е. на те, которые совместимы с симметриями, и те, которые с ними не совместимы. Объяснить, как это происходит, технически довольно трудно, но чтобы дать вам общую идею, я попытаюсь воспользоваться аналогией.
Предположим, что у вас есть швейная машинка, способная шить рубашки с рукавами двух размеров — короткими и длинными, но по каким-то причинам изобретатель этой машинки забыл включить контролирующее устройство, обеспечивающее, чтобы левые и правые рукава рубашки были одного размера. Половину времени вы будете шить нормальные рубашки с двумя длинными или двумя короткими рукавами. Однако вторую половину времени вы будете производить бесполезную продукцию — рубашки с одним коротким и одним длинным рукавами. К сожалению, другой швейной машинки у вас нет.
У вас есть выбор: либо выбросить вашу швейную машинку и вообще не шить рубашек, либо оставить машинку и шить половину хороших рубашек и половину негодных. Однако не все потеряно, так как довольно очевидно, какие рубашки надо оставить: годятся только те, которые сохраняют лево-правую симметрию. Вы будете всегда нормально одеты, если будете шить на вашей швейной машинке все типы рубашек, а затем отберете те из них, которые обладают лево-правой симметрией.
Внутренняя симметрия, связанная с взаимодействиями, работает похожим образом. Она предоставляет удобный критерий, позволяющий отличить те величины, которые мы в принципе можем наблюдать (те, которые обладают поляризацией, которую мы хотим сохранить), от тех, которые не должны присутствовать (т. е. тех, которым присуща фиктивная продольная поляризация вдоль направления движения). Как и в случае фильтров спама в компьютерах, которые выискивают отличительные черты нежелательных электронных писем, с тем чтобы отделить их от полезных посланий, фильтр внутренних симметрий отличает физические процессы, сохраняющие симметрию, от фиктивных процессов, которые ее нарушают. С помощью внутренних симметрий легко отличить спамоподобные поляризации — если они есть, они нарушают внутреннюю симметрию.
То, каким образом работает симметрия, очень похоже на разобранный выше пример с цветными прожекторами, в котором мы могли наблюдать только свет, образованный смешением трех цветов, а не отдельные цветные лучи. Аналогично, оказывается, что только определенные комбинации частиц совместимы с внутренними симметриями, содержащимися в теории взаимодействий, и именно эти комбинации возникают в физическом мире.