litbaza книги онлайнДомашняяСкладки на ткани пространства-времени - Говерт Шиллинг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 59 60 61 62 63 64 65 66 67 ... 88
Перейти на страницу:

До начала работы усовершенствованного LIGO (aLIGO) многие члены коллаборации предполагали, что интерферометр сможет обнаруживать главным образом столкновения нейтронных звезд. Предел расстояния, на котором возможна регистрация слияния нейтронных звезд, даже стал стандартным количественным параметром чувствительности интерферометра. У iLIGO и первоначальной версии Virgo, например, этот «охват» составлял 50–65 млн св. лет; во время первого научного запуска aLIGO – на одной трети чувствительности – достиг 200 млн св. лет.

Разумеется, астрофизики ожидали и столкновений ЧД. Если пара вращающихся по общей орбите нейтронных звезд сближается по спирали, то и пара ЧД должна вести себя так же. Столкновения ЧД могут быть зарегистрированы на значительно бóльших дистанциях: поскольку объекты массивнее, амплитуда возникающих волн Эйнштейна также гораздо выше, поэтому GW150914 удалось зарегистрировать на Земле, несмотря на удаленность в 1,3 млрд св. лет.

Никто, однако, не знал, сколько существует двойных ЧД – до сих пор не было обнаружено ни одной. Соответственно, неизвестно было, сколько ожидать столкновений и слияний. Прогнозные разнились на многие порядки. Напротив, двойные нейтронные звезды были открыты в галактике Млечный Путь; первой стала система Халса – Тейлора. Сочетая статистику с научными предположениями, несложно дать грубую оценку количества столкновений, которые сможет зарегистрировать такой интерферометр, как LIGO. В случае iLIGO это примерно одна регистрация в десятилетие, для aLIGO – несколько в год. (Напомню, что увеличение чувствительности в три раза приводит к троекратному росту охвата – от 65 до 200 млн св. лет. Поскольку это соответствует в 27 раз большему объему пространства, ожидаемый уровень регистраций также возрастает в 27 раз.)

Таким образом, ученые имели представление о количестве возможных регистраций слияний нейтронных звезд. Вероятно, поэтому они считали, что именно эти события в первую очередь будут обнаруживать усовершенствованные детекторы. Для физиков, не имеющих солидной астрономической подготовки, стало неожиданностью, что событием, зарегистрированным в 2015 г., оказалось столкновение ЧД. Другие, например Стэн Уиткомд из Калтеха, были с самого начала уверены, что в регистрациях LIGO будут преобладать слияния ЧД. Они могут быть сколь угодно более редкими, утверждает Уиткомб, зато их можно «увидеть» с гораздо большего расстояния. Кип Торн в книге 1994 г. «Черные дыры и складки времени» даже описывает сценарий «будущего», сверхъестественно близкий реальным событиям сентября 2015 г.:

Из деталей формы волны компьютер выводит не только историю спирального сближения, слияния и затухания возмущений, но и массы, и угловые вращения исходных дыр и результирующей дыры. Исходные дыры весили каждая в 25 раз больше Солнца и медленно вращались вокруг своих осей. Получившаяся дыра имеет массу в 46 солнечных и вращается со скоростью 97 % от предельно допустимой. Энергия, эквивалентная четырем массам Солнца (2 × 25–46 = 4), была преобразована в пульсации кривизны и унесена волнами.

Весьма похоже!

Кстати, в случае GW150914 об угловой скорости каждой из пары ЧД можно было узнать немногое. Данные, однако, показали, что возникшая в результате их слияния ЧД в 62 солнечные массы вращалась со скоростью в 67 % предельно допустимой. По GW151226 было установлено, что по крайней мере одна из двух сливавшихся ЧД имела угловую скорость более 20 % максимальной, а итоговая ЧД оказалась в 21 раз массивнее Солнца и ее угловая скорость составляла 74 % предельно допустимой. (Поскольку у ЧД нет поверхности, бессмысленно выражать угловую скорость в количестве оборотов в секунду или вести речь о скорости вращения, выраженной в километрах в секунду. Предельно допустимая угловая скорость ЧД – точнее, ее предельно допустимый угловой момент – это скорость любого падающего на дыру объекта в непосредственной близости от горизонта событий, ограниченная отношением скорости света к гравитационному радиусу.)

С учетом этого «пророчества» Торн едва ли был удивлен открытием ЧД массами в 36 и 29 солнечных, но многие астрономы удивились. Сливающиеся ЧД – это одно; столь массивные ЧД – совсем другое. Бесспорно, ЧД в ядрах галактик несопоставимо массивнее, но они образовались совершенно иначе (читайте об этом в главе 13). ЧД в двойных системах, как уже отмечалось, являются так называемыми черными дырами звездной массы: это конечный результат эволюции массивных звезд. Лишь немногие астрофизики представляли себе возможные пути возникновения настолько массивных объектов.

Казалось бы, если взять чрезвычайно массивную звезду, то автоматически получишь достаточно «увесистую» ЧД. Но возникает несколько препятствий. Прежде всего, невозможно создать сколь угодно массивную звезду. Огромное облако газа, сжимающееся под собственным весом, разогреется и начнет излучать, мешая дальнейшему падению газа на формирующуюся звезду. Присутствие в облаке газа небольшого количества тяжелых элементов лишь усилит этот эффект. Вследствие этого звезды обычно не могут набрать массу, намного превышающую примерно 100 солнечных.

Хватит ли этого, чтобы получить ЧД в 36 масс Солнца? Нет, не хватит. За короткую жизнь чрезвычайно массивные звезды теряют большую часть внешних слоев, уносимых в пространство мощным звездным ветром. Этот ветер оказывается еще сильнее, если звезда содержит малое количество элементов тяжелее водорода и гелия. К самому концу своего краткого существования звезда в 100 солнечных масс лишится более чем половины веса. Значительная часть остатка будет выброшена во время финального взрыва сверхновой. Ядро звезды, коллапсирующее в ЧД, предположительно, будет иметь не более 10–15 солнечных масс.

Теперь вы понимаете, почему первая регистрация LIGO привела астрономов в восторг. Это было первое прямое доказательство существования ЧД. Кроме того, стало ясно, что двойные системы ЧД существуют – как вы помните, никто прежде не обнаруживал такую систему. Наконец, оказалось, что природа способна создавать ЧД звездной массы намного превосходящие ранее рассчитанный рубеж около 10 масс Солнца.

Гейс Нелеманс из Университета Радбауд был одним из двух редакторов-координаторов статьи о GW150914 в Astrophysical Journal Letters. (Нелеманс – внук Антона Паннекука, современника Альберта Эйнштейна, отца-основателя голландской астрофизики, имя которого носит Астрономический институт Амстердамского университета.) По мнению Нелеманса, GW150914 – щедрый дар природы. Это была не только первая волна Эйнштейна, зарегистрированная человечеством, но и источник новой важной информации о рождении и эволюции массивных звезд[92].

Нелеманс и его соавторы убеждены, что прародители слившихся ЧД должны были содержать очень мало тяжелых элементов. Это уменьшило потерю ими массы со звездным ветром. Если они возникли из относительно «чистого» облака межзвездного газа, с пренебрежимо малым количеством элементов тяжелее водорода и гелия, то могли начать жизнь как настоящие звездные сверхгиганты. Слегка подкорректировав общепринятые в современной астрофизике взгляды, можно объяснить формирование ЧД в десятки раз массивнее Солнца.

1 ... 59 60 61 62 63 64 65 66 67 ... 88
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?