Шрифт:
Интервал:
Закладка:
Задача, которую я решил на чердаке, формулировалась следующим образом: предположим, что два мезона (две струны) до столкновения двигались с заданной энергией во встречных направлениях. Какова квантово-механическая вероятность того, что образовавшаяся после столкновения новая пара мезонов будет разлетаться в некотором заданном направлении? Задача выглядит ужасно сложной, и это просто математическое чудо, что она может быть решена.
Математическая задача описания идеального резинового шнура была решена ещё в начале XIX века. Колеблющуюся струну можно рассматривать как совокупность гармонических осцилляторов – по одному для каждого отдельного типа (моды) колебаний. Гармонический осциллятор – одна из немногих физических систем, которые могут быть полностью проанализированы с помощью очень простой математики уровня средней школы.
Добавить квантово-механическое описание, чтобы превратить струну в квантовый объект, тоже не составляет труда. Все, что необходимо помнить, – это что уровни энергии любой квантово-механической колебательной системы обладают дискретными значениями энергии (см. главу 1). Этих простых соображений достаточно, чтобы понять свойства одной колеблющейся струны, но описание двух взаимодействующих струн гораздо сложнее. Для этого мне пришлось разработать собственные правила с нуля, что сделало возможным локализовать сложное описание только для бесконечно малого времени, в течение которого происходит объединение струн. Как только это произойдёт, две струны снова становятся одной, описываемой простой математикой. Чуть позже струна рвётся, и этот процесс снова требует сложного описания, но опять же лишь для короткого промежутка времени. Таким образом, я сумел с большой точностью описать процесс объединения двух струн и последующего распада получившейся струны. Результат своих математических расчётов я сопоставил с уравнением Венециано, и они согласовались с идеальной точностью.
Барион представляет собой три струны, соединённые «звездой», мезон – одну открытую струну, но что такое глюбол? Начнём с цепочки танцоров. Допустим, танцоры, двигаясь в своём сложном танце, изогнули цепочку так, что два крайних танцора оказались рядом друг с другом. Не понимая, что они принадлежат к одной и той же цепочке, они могут взяться за руки. В результате получается замкнутый круг танцоров без свободных концов. То же самое может произойти и с колеблющимся мезоном. Предположим, что в процессе колебаний и вращений концы мезонной струны случайно оказались друг возле друга. Кварк на одном конце видит антикварк на другом и, не догадываясь, что его коллега принадлежит тому же самому мезону, хватает его, как змея собственный хвост. В результате получается глюбол: замкнутая струна, не имеющая на своих концах кварков. Большинство мезонов и барионов было известно задолго до создания теории струн, но глюболы были предсказаны ею, так сказать, с чистого листа. И если сегодня вы посмотрите на список известных частиц, то глюболы и их массы будут перечислены в нём наряду с барионами и мезонами.
Мезон превращается в глюбол
Глюболы, мезоны и барионы являются сложными объектами, которые могут вращаться и колебаться множеством способов. Например, струна, соединяющая концы мезона, может вибрировать, как пружина или даже как скрипичная струна; он может даже вращаться вокруг своей середины, растягиваясь под действием центробежной силы и образуя своеобразный адронный пропеллер. Эти возбуждённые состояния адронов соответствуют известным объектам, часть которых была обнаружена в экспериментах ещё в 1960-х.
Связь теории адронных струн с Законами Физики, и в частности с их формулировкой в терминах фейнмановских диаграмм, отнюдь не очевидна. Одним из способов визуализации теории струн является генерализация фейнмановских диаграмм путём замены точечных частиц струнами. Фейнмановские диаграммы состоят из основных элементов, которые мы уже рассматривали в главе 1: вершин и пропагаторов. Пропагаторы и вершины хороши для представления бесконечно малых точечных частиц квантовых полей. Например, вершина сама по себе является точкой, в которой сходятся траектории частиц. Если же сами частицы не являются точками, то не совсем понятно, что означает точка встречи их траекторий. Как же придать смысл пропагаторам и вершинам для струн? Когда мы имеем дело с точечной частицей, мы представляем её движение в виде линии в пространстве-времени. В каждый момент времени частица представляется точкой, но в результате движения эта точка разворачивается в кривую линию. Великий Минковский назвал траекторию движения частицы в пространстве-времени мировой линией, и этот термин прочно вошёл в науку.
Теперь представим себе, как могла бы выглядеть история струны в пространстве-времени. Возьмём замкнутую струну, не имеющую концов. В каждый конкретный момент времени такая струна будет представляться в пространстве замкнутой кривой. Представьте себе, что эту струну освещает стробоскоп. Во время первой вспышки мы увидим кольцо. При следующей вспышке мы увидим то же самое кольцо, только в другом месте. В конечном итоге мы увидим набор колец, отображающий последовательные положения струны.
Но в действительности время течёт непрерывно, и чтобы составить полную историю движения струны, нужно заполнить промежутки между её последовательными изображениями. В результате получится трубка, проходящая через пространство-время: двумерная цилиндрическая поверхность.
Размер кольца струны может изменяться со временем, ведь струна способна сжиматься, растягиваться и колебаться. Временами она может даже самопересекаться, образуя подобие восьмёрки или принимая более сложные формы. В этом случае цилиндр окажется деформированным, но в нём всё ещё можно будет узнать цилиндр.
Поверхность, заметаемую кольцом, можно было бы очень удачно назвать трубкой мира по аналогии с мировой линией. Но так случилось, что в физике прижился другой термин: мировой лист, или мировая поверхность. Но как бы мы его ни называли, этот цилиндр представляет собой пропагатор струны, который приходит на замену пропагатору точечной частицы.
Мезон, оканчивающийся двумя кварками, тоже может быть представлен в виде мирового листа, только это будет не цилиндр, а лента, имеющая два края. Вернёмся к аналогии со стробоскопом. Теперь мы будем видеть последовательность открытых струн с кварками на концах. Заполнив пространство между последовательными изображениями мезона, мы получим мировой лист в виде ленты.