Шрифт:
Интервал:
Закладка:
Рис. 18.9. Ребра прямоугольной коробки образуют три линии, перпендикулярные друг другу. В трехмерной Вселенной нельзя найти четвертую прямую, перпендикулярную всем этим трем линиям.
Идея Эйнштейна представить гравитацию как кривизну пространства выглядит настолько элегантно, что физики задумались — а нельзя ли и другие силы представить так же? К моменту завершения общей теории относительности была известна еще только одна сила — электромагнитная, которая хорошо описывалась теорией Максвелла. Эйнштейн чувствовал, что гравитация и электромагнетизм должны быть как-то связаны друг с другом. Остаток жизни он потратил на поиск единой теории.
Эту точку зрения разделял и финский физик Гуннар Нордстрём (1881–1923), опубликовавший в 1914 году в журнале Physikalische Zeitschrift общую теорию гравитации и электромагнетизма, согласно которой пространство четырехмерно (а не трехмерно), а время является пятым измерением. Нордстрём впервые ввел дополнительное измерение в наше пространство-время, так что гравитация стала всего лишь проявлением электромагнитного взаимодействия в пяти измерениях. В проекции на известные четыре измерения гравитация и электромагнетизм кажутся разными силами. Эта теория, к сожалению, оказалась ошибочной. Но сама идея унификации с использованием дополнительных пространственных измерений была рождена.
Гуннар Нордстрём был современником Альберта Эйнштейна. Инженер по образованию, он заинтересовался химией, и это привело его в Геттинген, где он учился у Вальтера Нернста. В Геттингене молодой Нордстрём стал искренним приверженцем релятивизма. После единственной статьи по химии все остальные статьи Норд-стрёма были посвящены релятивизму, электродинамике и гравитации. Свою первую релятивистскую теорию гравитации, предшественницу общей теории относительности, Нордстрём представил в 1912 году и усовершенствовал в 1913 году, во время совместной работы в Цюрихе с Эйнштейном. В 1914 году Эйнштейн и А. Д. Фоккер переформулировали эту теорию. Ее главный недостаток состоял в том, что она не предсказывало отклонения света, проходящего вблизи массивных тел. Этот эффект был открыт в 1919 году, после чего Нордстрём отказался от своей теории и работал над общей теорией относительности Эйнштейна.
После возвращения в Хельсинки Нордстрём стал доцентом теоретической физики в университете и преподавал курс элементарной физики в старших классах. В 1916–1918 годах он работал в Лейдене (Голландия). В 1918 году он занял должность профессора физики в Технологическом университете Хельсинки. До Нордстрёма в Хельсинки не было традиции заниматься теоретической физикой, поэтому его работа не находила понимания. На просьбу выделить ему деньги на заграничную командировку он получил отказ с формулировкой: «Четвертое измерение можно изучать и дома, без путешествий за границу».
В 1921 году немецкий физик Теодор Калуца (1885–1954) независимо пришел к идее объединенной теории, использующей пятое измерение. В работе Калуцы электромагнетизм тоже является следствием кривизны пространства-времени, и теперь перед нами искривленное пятимерное пространство, так что электромагнетизм становится одним из видов гравитации.
Можно ли иметь пять измерений — четыре пространственных плюс время — в противовес четырехмерной гравитации (три измерения в пространстве плюс время), с которой мы ознакомились в теории Эйнштейна? Все бы было неплохо, если бы добавление еще одного обычного пространственного измерения не усложнило задачу. В 1747 году Иммануил Кант показал, что закон гравитации связан с размерностью пространства. Если гравитация ослабевает с расстоянием обратно пропорционально некоторой его степени (n), то число пространственных измерений будет n + 1. В законе Ньютона эта степень составляет n = 2, а размерность пространства равна 2 + 1 = 3. Если бы тело двигалось в другом силовом поле, с другим значением n, то можно показать, что его орбита при n больше 2 была бы очень неустойчива. Например, если бы сила гравитации с удалением от Солнца уменьшалась так, что n равнялось бы 3, то небольшие возмущения вынудили бы Землю либо упасть на Солнце, либо улететь от него. И если бы для электрической силы n равнялось 3, то вокруг ядра атома не могли бы существовать электронные оболочки. Сложные химические соединения и жизнь на Земле стали бы невозможны.
После Нордстрёма и Калуцы шведский физик Оскар Клейн (1894–1977) сформулировал теорию пятимерной гравитации. Для решения вышеупомянутых проблем Клей предположил «уплотнить» дополнительное пространственное измерение. А именно — он закрутил пятое измерение так сильно, что оно стало круговым; этот круг до того мал, что его невозможно непосредственно наблюдать даже внутри атомов. Замечательным результатом теорий пятимерной гравитации Нордстрёма-Калуцы-Клейна стало то, что они объединили гравитацию с электромагнетизмом.
Как закручены измерения в теории Клейна? В качестве примера рассмотрим кусок проволоки. Если смотреть на него издалека, то он кажется одномерным, его единственным измерением служит длина. Но если мы приблизимся к нему, то увидим, что у проволоки есть и толщина, поэтому требуется еще одно измерение для указания положения точки на окружности, охватывающей проволоку. Вот это измерение закручено (рис. 18.10).
С точки зрения Клейна, существует четвертое измерение, связанное с каждой точкой нашего трехмерного пространства. Это искривленное четвертое измерение закручено в маленькую окружность. Мы не замечаем эти окружности вокруг себя из-за их малого размера: они меньше протона настолько же, насколько сам протон меньше планеты. Даже если такое измерение существует, то неудивительно, что мы не можем его наблюдать.
С годами теория Нордстрёма-Клейна-Калуцы оказалась забыта. Но когда были открыты новые силы, физики задумались — а почему бы не описать все силы как явления кривизны пространства в более высоких измерениях? Это было сделано в теории супергравитации, которая связана с очень абстрактной и детально разработанной теорией струн. В ней утверждается, что вся материя и энергия состоят из необычайно коротких нитей, называемых струнами (вместо точечных частиц, которые обычно представляют), а также мембранных образований, называемых бранами. Заменяя точечные частицы струнами, можно объединить известные силы — электромагнитные, гравитационные, слабые и сильные ядерные. При таком подходе нет реальных сил, а только искривление пространства, которое проявляется в разных формах или влияниях («силах»).
Рис. 18.10. Свернутое измерение. Верхняя линия выглядит одномерной, но если мы увеличим на ней точку Р, то увидим, что в действительности это двумерная трубка. Второе свернутое измерение было скрыто. В теории Клейна измерения выше трех скрыты таким же образом.
До сих пор не существует окончательного варианта теории супергравитации; современные модели используют до десяти пространственных измерений (плюс время). Все измерения пространства, кроме трех, должно быть каким-то образом компактифицированы (упакованы) в крошечный объем, например закручены в семимерный шар размером в 10-32 см. Не нужно даже пытаться представить себе этот клубок измерений в нашем пространстве; все дополнительные измерения находятся вне нашего трехмерного мира.