litbaza книги онлайнРазная литератураПринцип эксперимента. 12 главных открытий физики элементарных частиц - Сьюзи Шихи

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 61 62 63 64 65 66 67 68 69 ... 95
Перейти на страницу:
частиц. Ученые попытались найти кварки, используя протонный синхротрон и пузырьковую камеру, но ничего не добились. Кварки либо имели массу, превышающую ту, которую они могли создать, либо их не существовало. Либо происходило нечто иное.

Лаборатории с большими ускорителями протонов, похоже, не могли освободить кварки путем расщепления протона или нейтрона на части. Нужно придумать другой способ определить, существуют ли они. Но как это сделать? Так уж получилось, что новое оборудование в SLAC как раз обеспечивало необходимые условия для такой работы.

Ускоритель на 20 ГэВ появился на свет в 1966 году, задействовав несколько тысяч человек из Стэнфорда и других стран и компаний, а поиск кварков стал приоритетом номер один. Тогда же родилось сотрудничество SLAC с Массачусетским технологическим институтом, в котором участвовали, в частности, Генри Кендалл, Ричард Тейлор и Джером Фридман. Сторону SLAC возглавляли Кендалл и Тейлор. Кендалл, любитель активного отдыха, – физик родом из Бостона, а Тейлор, известный своим остроумием и юмором, – из канадской провинции Альберта. Фридман, художественно одаренный сын еврейских русских иммигрантов, представляющий Массачусетский технологический институт, был родом из Чикаго. Фридман ездил на работу в Калифорнию, где встречался с Кендаллом и Тейлором.

Замышляемый ими эксперимент напоминал тот, который мы уже видели, когда Гейгер и Марсден отражали альфа-частицы от золотой фольги, выясняя, есть ли у атома ядро. Чтобы узнать, есть ли у протонов и нейтронов подструктура, охотники за кварками конца 1960-х годов решили использовать почти такой же метод. Электроны с энергией 20 ГэВ могли проникнуть глубоко внутрь протонов и нейтронов. Если внутри есть какие-либо кварки, электроны разлетятся в результате столкновения, а их углы и энергии можно будет использовать для восстановления того, с чем они взаимодействовали[233].

Если вы сегодня поедете по межштатной автомагистрали 280, на полпути между Сан-Франциско и Сан-Хосе вы проедете прямо по двухмильному ускорителю. Когда его строили, туннель, в котором находится ускоритель, считался самым длинным зданием в Соединенных Штатах[234]. Внутри располагается клистронная галерея, полная мощных радиочастотных устройств, изобретенных Хансеном и братьями Вариан. Генерируемая ими энергия передается на несколько метров под землей в точно обработанные медные резонаторы, из которых состоит линейный ускоритель электронов. Внутри электроны разгоняются на волнах, пока не достигнут 20 ГэВ[235], двигаясь со скоростью 99,9999999 % от скорости света.

Когда в конце 1960-х годов все было готово, в конце ускорителя электронные пучки изгибались и направлялись по трем линиям в два экспериментальных зала, где они попадали – или, точнее, рассеивались – в мишень, сделанную из жидкого водорода, богатого протонами. Затем рассеянные электроны проходили через устройство, называемое магнитным спектрометром, которое измеряло энергию электронов, изгибая их в магнитном поле. Спектрометр был самым большим научным прибором своего времени, длиной 50 метров и весом 3000 тонн. При этом он был подвижен и установлен так, чтобы поворачиваться вокруг цели и проводить измерения под разными углами.

В 1967 году Кендалл, Тейлор и Фридман начали проводить эксперименты с большим спектрометром и двумя поменьше. Что они ожидали увидеть? Несмотря на амбиции найти кварки, большинство физиков все же считали, что их не существует и что протон и нейтрон имеют своего рода мягкую внутреннюю структуру. Ожидалось, что меньше электронов будет рассеиваться по мере увеличения угла наклона спектрометра. Любое отклонение от этого может указывать на наличие кварков – или чего-то еще – внутри. В ходе эксперимента были собраны данные для создания распределения вероятностей, и команда принялась внимательно изучать результаты и их интерпретировать.

Ожидания и результаты эксперимента расходились невероятным образом[236]. Сначала было не совсем ясно, что результаты свидетельствуют о наличии кварков, но, похоже, они правда свидетельствовали о какой-то структуре внутри протона. Теоретики, включая Ричарда Фейнмана и Джеймса Бьёркена, для описания найденных сущностей придумали название «партоны». Во многом все происходящее напоминало эксперимент с золотой фольгой, только на этот раз физики проникли еще глубже в сердце материи: протоны не были фундаментальными частицами, и результаты, казалось, доказывали, что партоны – предположительно, тип частиц – были похожи на точки, точечноподобны. Что значит «точечноподобна» в отношении частицы? Так же, как и в случае с электроном, это означает, что частица настолько мала, что ее невозможно измерить. Как позже вспоминал Джером Фридман, «это была очень странная точка зрения. Она настолько отличалась от того, что предполагалось в то время, что мы не хотели обсуждать результаты публично»[237].

В течение следующих нескольких лет Фридман, Кендалл и Тейлор продолжали собирать данные под разными углами спектрометра и провели второй раунд экспериментов с использованием жидкой дейтериевой мишени для сбора сравнительных данных для нейтрона[238]. Имея достаточно доказательств, они могли быть уверенными в своих результатах: партоны действительно были кварками, точечноподобными объектами, образующими структуру протонов и нейтронов. Теперь мы можем сказать, что протон состоит из трех кварков, двух верхних и одного нижнего, а нейтрон – из одного верхнего и двух нижних. Последним кусочком головоломки было подтверждение идеи о том, что кварки обладают дробными электрическими зарядами. Сравнили рассеяние электронов с аналогичными данными из ЦЕРНа, где использовали (электрически нейтральные) нейтрино, которые дали физикам информацию об электрических зарядах, участвующих во взаимодействии. У кварков правда дробные заряды.

Дальнейший анализ данных выявил еще более необычную информацию о протонах и нейтронах, чем тот факт, что внутри них были кварки. Каждый протон или нейтрон состоит примерно из равных частей кварков и нейтральных глюонов – безмассовых частиц и переносчиков сильной взимодействия, которые «склеивают»[239] кварки вместе, – это во многом похоже на то, как фотон переносит электромагнитную силу. Три основных кварка в протоне и нейтроне называются валентными кварками. Вокруг них – «море» кварк-антикварковых пар, которое также обнаружилось в данных, полученных в результате рассеяния при низких энергиях. Протон и нейтрон следует рассматривать полностью с точки зрения как массы, так и взаимодействий, включая как морские кварки – верхние, нижние и странные пары «кварк – антикварк», – так и валентные кварки.

В 1970-х годах физики начали понимать необычные свойства сильного взаимодействия, которое связывает кварки вместе. Оно относительно слабо на коротких расстояниях, но чрезвычайно сильно на больших, словно эластичная лента, удерживающая кварки вместе. Когда кварки находятся рядом друг с другом, они могут двигаться с относительной свободой, но стоит их разлучить, как против вас восстанет свойство, называемое конфайнментом (удержанием). Оно удерживает кварки внутри протона и нейтрона до такой степени, что если вы попытаетесь разделить их, то вложенная вами энергия просто создаст новую пару «кварк – антикварк». Странным результатом этого становится то, что мы

1 ... 61 62 63 64 65 66 67 68 69 ... 95
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?