Шрифт:
Интервал:
Закладка:
В один прекрасный день 1963 года, гуляя по территории кампуса Калифорнийского технологического института, Фаулер встретил своего коллегу, блестящего физика Ричарда Фейнмана. Фейнману было тогда 45 лет. (Спустя два года он был удостоен Нобелевской премии за решение задач квантовой электродинамики, с которыми не справились такие титаны теоретической физики, как Дирак, Гейзенберг и Паули.) Увидев Фаулера, Фейнман тут же заявил: «Вилли, дорогой, а знаете ли вы, что эти сверхмассивные объекты, над которыми вы и Фред сейчас работаете, неустойчивы: они будут коллапсировать согласно общей теории относительности?» Хойл и Фаулер в своей модели использовали теорию гравитации Ньютона, но общая теория относительности предсказывает гораздо большее гравитационное притяжение молекул газа, чем теория Ньютона. Это означало, что излучающие энергию сверхмассивные звезды должны непрерывно сжиматься. Фаулер тут же побежал к себе в кабинет и, как он потом рассказывал, «введя параметры общей теории относительности в свои расчеты, убедился, что Дик прав и эти проклятые звезды действительно должны коллапсировать». Он попытался спасти свою теорию, варьируя количество сжигаемого ядерного топлива и учитывая вращение звезды, но все было бесполезно.
А между тем в 1960 году Чандра решил снова вернуться к теории относительности — области физики, которой он долго избегал. К этому времени он закончил заниматься гидродинамической и гидромагнитной стабильностью (в 1961 году вышла его монография «Гидродинамическая и гидромагнитная стабильность»). Эта работа не принесла Чандре большого удовлетворения. Расчеты были долгими и трудными, и у него возникло чувство, что он впустую потратил десять лет, работая над не очень существенными проблемами. И тогда он решил обратиться к «более глубоким вопросам». Для него это было в некоторой степени и вопросом самоутверждения. Чандра хотел заняться тем, к чему стремился в течение многих лет, — теоретической физикой. Сможет ли он создать что-нибудь значительное? Он поделился своими сомнениями с коллегой по кафедре физики и другом Грегором Вентцелем, и тот его ободрил. «В любом случае, — сказал он, — вас ведь не уволят».
В 1962 году Чандра принял участие в III Международной конференции по гравитации и теории относительности в Варшаве. Там он увлеченно обсуждал проблемы астрофизики с Я. Б. Зельдовичем, с которым последний раз встречался во время поездки в Россию, двадцать восемь лет назад. Чандра вернулся из Варшавы вдохновленный. Теперь он понимал, чем стоит заняться.
Именно тогда Вилли Фаулер попал в затруднительное положение в связи с проблемой стабильности сверхмассивных звезд. Когда физик ранга Фейнмана пытается решить проблемы, находящиеся на переднем крае науки, это распространяется мгновенно. Чандра был знаком с компьютерными расчетами Фаулера, в которых звезды в 100 миллионов раз массивнее Солнца сжигают свое ядерное топливо и затем коллапсируют. Он также слышал об интуитивном отклике Фейнмана на эту работу и об отчаянных попытках Фаулера спасти свою теорию. Чандру эта тема задела за живое, он словно вернулся к событиям тридцатилетней давности, в Кембридж. Это напоминало задачу, которую Эддингтон поставил в 1916 году: каким образом остаются стабильными звезды, у которых чередуются периоды расширения и сжатия.
Чандра тогда просто использовал аппарат общей теории относительности и заявил, что Эддингтон мог бы получить аналогичные результаты пару десятилетий назад.
В 1964 году Чандра опубликовал свои первые работы по общей теории относительности. Он доказал, что, если звезда в 100 миллионов раз массивнее Солнца начнет пульсировать, она станет нестабильной. Если же она уменьшится до предполагаемого размера квазара — 160 миллиардов километров в поперечнике, — то ей придется полностью сколлапсировать и прекратить свое существование. Поэтому предполагаемая сверхмассивная звезда Хойла и Фаулера не может быть источником энергии квазаров. Чандра был в восторге от своего результата. Он заявил: «Я совершенно убежден, что сингулярности — звезды бесконечно малого размера и бесконечно большой плотности — на самом деле существуют. Огромные звезды с массой больше верхней границы для белых карликов, сжимаются в ничто и исчезают в пространстве и времени».
В декабре все основные действующие лица в исследовании квазаров собрались на симпозиуме по релятивистской астрофизике в Техасском университете в Остине. Информации и идей было в избытке. Сессия следовала за сессией, на которых Фаулер и его сотрудники представляли теории, соответствующие быстро расширяющейся базе данных. Некоторые из их теорий помещали квазары на край Солнечной системы, другие — на край Вселенной. Один день был посвящен гравитационному красному смещению, следующий — космологическому. Доклады по быстрым струям нужно было слушать в Далласе, и участникам симпозиума приходилось летать самолетом из Далласа в Остин. Они называли это «развозом молока». Возвращаясь обратно в Даллас после окончания сессии, Ричард Уайт обнаружил, что оказался среди таких корифеев астрофизики, как Маргарет и Джеффри Бербидж, Чандра, Фаулер, Уилер и Шмидт. Когда пассажирам разрешили отстегнуть ремни безопасности, Фаулер встал, драматически прижал руки ко лбу, оглядел всех присутствующих и объявил громовым голосом: «Пока этот самолет не упал, мы можем смело продолжить обсуждение квазаров».
Природа квазаров, причина их невероятной яркости до сих пор остается тайной. В 1964 году Эдвин Солпитер в США и Я. Б. Зельдович с сотрудниками в Советском Союзе предложили сценарий эволюции звезд с массой более чем в миллион раз больше массы Солнца. Такие огромные космические образования, проходя сквозь облако межзвездного газа, захватывают его молекулы, а затем, пережив гравитационный коллапс, превращаются в невообразимо малые точки, невероятно плотные и тяжелые. Далее они сворачивают вокруг себя пространство и продолжают движение, захватывая все новые и новые частицы газа, словно космические пылесосы. Частицы вблизи края горизонта событий будут врезаться друг в друга с околосветовой скоростью, нагреваясь и испуская мощное рентгеновское излучение. Теория Солпитера и Зельдовича предлагала способ генерирования огромного излучения — гораздо более мощного, чем при протекании ядерной реакции. Столько излучает целая галактика.
Удивительным образом самые различные пути и методы исследований дали результаты, которые сложились в единую картину. В 1965 году Пенроуз элегантно доказал с помощью топологии, что падающая за горизонт событий звезда исчезает навсегда. В 1966 году Колгейт и Уайт использовали компьютерное моделирование для изучения механизма коллапсирования звезд, а в 1967 году Джон Уилер нашел прекрасный и впечатляющий термин для описания области пространства, в которую коллапсируют звезды, — «черная дыра». Радиоастрономия помогла обнаружить квазары, черпавшие энергию из черных дыр: черная дыра находится в центре квазара, и частицы, улетающие за горизонт событий, излучают мощную радиацию. Теперь уже никто не сомневался в существовании черных дыр. А темпы исследований возрастали с каждым годом.
В 1969 году английский астрофизик из Королевской Гринвичской обсерватории в Сассексе Дональд Линден-Белл использовал модель Солпитера и Зельдовича для изучения центра галактики. Он предположил, что массивная звезда, полностью сколлапсировавшая за горизонт событий, станет таким сильным источником гравитации, что втянет в себя все вокруг с образованием вращающегося диска. Это натолкнуло на мысль, что черные дыры тоже могут вращаться. Массивные звезды выбрасывают в пространство часть своей массы, становятся все меньше и вращаются все быстрее и быстрее. То есть черные дыры — это не просто место для умирающих звезд, но нечто, что имеет структуру, определенные физические свойства. В 1963 году 29-летний математик из Новой Зеландии Рой Керр предложил математическое описание вращающихся черных дыр. Защитив диссертацию в Кембридже, он работал в Техасском университете в Остине.