Шрифт:
Интервал:
Закладка:
Вафа и его коллеги обнаружили для уравнений струн немало перспективных решений, которые выглядят соответствующими материальному миру. В сущности, при поразительно малом количестве допущений они могут заново вывести Стандартную модель — для теории это важный шаг. По сути дела, это и сильная, и слабая сторона теории суперструн. Вафа и его коллеги в каком-то смысле переусердствовали: нашли миллионы прочих возможных решений для струнных уравнений.
Основная проблема, с которой столкнулась теория суперструн, заключается в следующем: неизвестно, какая из миллионов возможных вселенных, которые можно математически образовать с помощью теории суперструн, окажется верной. Как сказал Дэвид Гросс, «существуют миллионы миллионов решений с тремя пространственными измерениями. Возможных классических решений невообразимое множество… Всё это изобилие поначалу внушало радость, так как доказывало, что теория, подобно гетеротической струне, может выглядеть очень похожей на реальный мир. Помимо четырёх пространственно-временных измерений эти решения обладают многими другими свойствами, характерными для нашего мира, — надлежащими видами частиц, такими как кварки и лептоны, подходящими видами взаимодействий… Все они два года назад вызывали воодушевление»{92}.
Гросс предупреждает: хотя некоторые из этих решений очень близки к Стандартной модели, другие дают нежелательные физические свойства: «Несколько смущает то, что при обилии возможных решений у нас нет надёжного способа делать выбор среди них. Вдобавок к многочисленным желательным свойствам эти решения имеют несколько потенциально катастрофических свойств»{93}. Непосвящённый, услышав об этом впервые, наверняка озадачится и спросит: почему бы не произвести вычисления и не посмотреть, какое решение предпочтительно для струны? Поскольку теория струн чётко определена, недоумение вызывает то, что физики не в состоянии вычислить ответ.
Проблема в том, что теория возмущений, один из главных инструментов в физике, в данном случае бесполезна. Теория возмущений (которая учитывает всё более малые квантовые поправки) не в состоянии разложить десятимерную теорию на четыре и шесть измерений. Так что мы вынуждены пользоваться непертурбативными методами, печально известными своей сложностью в применении. По этой причине мы и не можем найти решение для теории струн. Как уже говорилось ранее, струнная теория поля, разработанная мной и Киккава и усовершенствованная Виттеном, в настоящее время несовместима с непертурбативными методами. Настолько умных не нашлось.
Однажды моим соседом был аспирант-историк. Помню, как-то раз он предостерёг меня, сказав, что компьютерная революция в конце концов может лишить физиков работы: «Ведь компьютер может вычислить что угодно, верно?» С его точки зрения, это был лишь вопрос времени: математики заложат все вопросы физики в компьютер, и физики выстроятся в очередь на биржу труда.
Этим замечанием он огорошил меня, так как для физика компьютер — не что иное, как усовершенствованный арифмометр, безупречный и безмозглый. Недостаток интеллекта он возмещает скоростью. Надо заложить теорию в компьютер, прежде чем он сможет провести вычисления. Разрабатывать новые теории самостоятельно компьютер не в состоянии.
Мало того, даже если теория известна, компьютеру может потребоваться бесконечно долгое время для решения задачи. В сущности, вычисления, относящиеся к вопросам, которые представляют наибольшей интерес для физиков, занимают уйму компьютерного времени. В этом и заключается проблема с теорией струн. Хотя Вафа и его коллеги предложили миллионы возможных решений, понадобилось бы бесконечное количество времени, чтобы определить, какой из миллиона возможных вариантов верен, или же выполнить для квантовых задач вычисления, в которые входит замысловатый процесс туннелирования — один из квантовых феноменов, представляющих особую трудность при расчётах.
В конечном счёте мы задаёмся тем же вопросом, что и Калуца в 1919 г., — куда девалось пятое измерение? — только на более высоком уровне. Как указывал Клейн в 1926 г., ответ на этот вопрос имеет отношение к квантовой теории. Туннелирование — возможно, самое поразительное (и сложное) явление в ней.
К примеру, сейчас я сижу в кресле. Представлять себе, как моё тело вдруг проходит между молекулами ближайшей стены и вновь становится единым целым в чужой гостиной, довольно неприятно. К тому же это маловероятно. А квантовая механика утверждает, что существует конечная вероятность (хоть она и мала), что даже самые невероятные, немыслимые события — например, проснувшись однажды утром, обнаружить свою кровать посреди джунглей Амазонки — на самом деле произойдут. Любые события, независимо от их правдоподобия, квантовая теория сводит к вероятностям.
Туннелирование — процесс, название которого звучит так, словно относится не к науке, а к научной фантастике. Однако туннелирование можно количественно оценить в лаборатории, и, в сущности, оно решает загадку радиоактивного распада. Обычно ядро атома стабильно. Протоны и нейтроны в ядре удерживает вместе сила ядерного взаимодействия. Однако остаётся малая вероятность, что ядро распадётся и протоны и нейтроны в процессе туннелирования преодолеют серьёзный энергетический барьер — силу ядерного взаимодействия, которая не даёт ядру распасться. Обычно мы считаем любое ядро атома стабильным. Но неоспоримо, что ядра атомов урана распадаются, когда не должны бы; закон сохранения энергии на краткое время нарушается, когда нейтроны ядра пробиваются через барьер.
Подвох в том, что эти вероятности исчезающе малы для таких крупных объектов, как люди. Вероятность нашего туннелирования сквозь стену при жизни известной нам Вселенной бесконечно мала. Таким образом, я могу быть спокоен, что мне не грозит неприличное проникновение сквозь стену — по крайней мере при нынешней моей жизни. Наша Вселенная, которая поначалу могла быть десятимерной, тоже нестабильна; она туннелировала и со взрывом разделилась на четырёх- и шестимерную вселенные.
Для того чтобы понять, как происходит такое туннелирование, представьте себе несуществующий фильм с Чарли Чаплином, в котором его герой пытается застелить простынёй огромную кровать. Такая натяжная простыня с резинками. Однако она слишком мала, и герою приходится натягивать эластичные резинки на углы матраса по очереди. Наконец герой довольно улыбается: простыня расправлена и закреплена по всем четырём углам кровати. Но натяжение слишком велико, одна резинка соскакивает со своего угла, простыня скручивается. В досаде герой Чаплина натягивает соскочившую резинку на соответствующий угол, но в этот момент соскакивает другая резинка. Всякий раз, когда Чаплин натянет резинку на один угол, с другого она соскакивает.