Шрифт:
Интервал:
Закладка:
Планета-гигант к тем проблемам, что существуют с магнитным полем Земли, является своеобразным пульсаром: «Юпитер мощный источник радиоволн в диапазоне от нескольких килогерц до десятков мегагерц. Радиоволны с частотами менее, чем, примерно, 0.3 МГц (а значит с длиной волн более 1 км) называют Юпитерианским километровым излучением (сокращённо по-английски: KOM). Радиоволны в диапазоне от 0.3 до 3 МГц (с длиной волн от 100 до 1000 м) называют гектометрическим излучением (сокращенно HOM), а излучение между 3 и 40 МГц (с длиной волн от 10 до 100 м) зовут дециметрическим излучением (или сокращенно DAM). Радиоизлучение впервые наблюдавшееся из космоса на Земле с периодичностью примерно в 10 часов, как, оказалось, принадлежало Юпитеру». [2]
Ко всем перечисленным «прелестям» тормозное, рентгеновское излучение в магнитном поле Юпитера имеет аномальные величины: «Замечено, что всплески в радиоизлучении Юпитера также связаны с повышением солнечной активности. В дополнение к относительно длинноволновому радиоизлучению, Юпитер также испускает синхротронное излучение (также известное, как Юпитерианское дециметровое излучение или „DIM“) на частотах в 0.1—15 ГГц (длина волн от 3 м до 2 см), которое является тормозным излучением релятивистских электронов захваченных во внутренние радиационные пояса планеты. Энергия электронов сопровождающих „DIM“ излучение равняется 0.1 — 100 мэВ, а основной вклад в него вносят электроны с энергией от 1 до 20 мэВ. Это излучение хорошо понятно и изучено, использовалось с начала 1960-х для изучения структуры планетарного магнитного поля и радиационных поясов. Частицы в радиационных поясах происходят из внешней магнитосферы и адиабатически ускоряются, когда попадают во внутреннюю. Магнитосфера Юпитера выбрасывает потоки из высоко-энергетических электронов и ионов (с энергией до десятков мэВ), которые достигают Земной орбиты. Эти потоки частиц высоко коллимированы и разнятся в зависимости от периода вращения планеты, как и радиоизлучение. В этом отношении Юпитер также напоминает пульсар». [2] Микросхемы и вся электроника АМС полностью обречены!
О том, как влияет рентгеновское излучение, например, на микросхемы, хорошо известно специалистам: «Воздействие рентгеновского излучения на электронные устройства и компоненты 37 Механизм повреждения: Что происходит с микросхемой, когда она подвергается воздействию рентгеновского излучения? Механизмы повреждений различаются от технологии к технологии, например, для современных микросхем важны радиационно-индуцированные токи утечки, а в старых технологиях важную роль играл сдвиг порогового напряжения транзистора. К примеру, при прохождении рентгеновского излучения через транзистор в подзатворном диэлектрике начинает накапливаться заряд, который будет влиять на работу транзистора, как дополнительно приложенное logID. Ситуация «После облучения» — красная линия на графике. Событие «До облучения» — это голубая линия на рисунке 8. Ниже представлен график зависимости logID от напряжения затвора 8.
Рисунок 8: Вольтамперная характеристика МОП n-канального транзистора до и после облучения. В результате транзистор будет постоянно «открыт», что естественно приведет к потере работоспособности схемы. Также уменьшение порогового напряжения транзистора приведет к превышению общего тока потребления микросхемы из-за токов утечки. На рисунке 8 приведена вольтамперная характеристика МОП n-канального транзистора до и после облучения. Зависимость от поглощённой дозы рентгеновского излучения Дрейф отдельных характеристик микросхемы и, следовательно, возможный отказ обусловлены полной поглощенной дозой. Микросхема, используемая в бытовой технике, после накопления Гр может перестать работать (а критическая доза рентгеновского излучения для человека составляет 5—10 Гр). Максимально допустимые дозы приблизительно известны и представлены в различных источниках 1 рисунок 9». [7] В радиационных и магнитных полях, поблизости от Юпитера, где присутствует длительное жесткое рентгеновское излучение (тормозное) наступает гибель всех диодов, резонаторов, транзисторов, микросхем. В таблице 9 указаны «ИС» — интегральные схемы. Они не выдержат прохождение зоны рядом с Юпитером.
Аннотация таблицы 9: «Рисунок 9. Максимально допустимые дозы излучения. Отдельно следует рассмотреть радиационно-стойкие микросхемы. На сегодняшний день существует целый класс подобных микросхем, например, микросхемы западного производства, относящиеся к категории „Space“ и выпускаемые для космической промышленности. Такие микросхемы, выпускаемые в металлокерамических корпусах, являются радиационно-стойкими. Следует отметить, что микросхемы отечественного производства (согласно перечню МОП), прошедшие приемку 3 и 5, не обязательно являются радиационно-стойкими». [7] Для справки, ИС — это Интегральная (микро) схема (ИС, ИМС, IC), микросхема, м/сх, чип (chip «тонкая пластинка»: первоначально термин относился к пластинке кристалла микросхемы) — микроэлектронное устройство — электронная схема произвольной сложности (кристалл), изготовленная на полупроводниковой подложке (пластине или плёнке) и помещённая в неразборный корпус или без такового в случае вхождения в состав микросборки [8] Точно такие же проблемы ждут мифическую АМС США в районе магнитного поля Сатурна. Ситуация усугубляется пылевыми облаками в зоне колец планеты-гиганта.
Эти образования наполнены пылью и щебнем, фракциями колец Сатурна. Магнитосфера и радиационные пояса Сатурна, по сведениям американских сказочников принципиально ничем не отличаются от таких же параметров планеты Юпитер: «Поскольку Сатурн весьма сходен с Юпитером по своим физическим свойствам, астрономы предположили, что достаточно заметное магнитное поле есть и у него. Отсутствие же у шестой планеты наблюдаемого с планеты Земля магнитно-тормозного радиоизлучения объясняли влиянием колец. Эти предложения подтвердились. Еще при подлете космического корабля «Пионера-11» к Сатурну его приборы зарегистрировали в околопланетном пространстве образования, типичные для планеты, обладающей ярко выраженным магнитным полем: головную ударную волну, границу магнитосферы (магнитопаузу), радиационные пояса (Земля и Вселенная, 1980, N2). В целом магнитосфера Сатурна весьма сходна с земной, но, конечно, значительно больше по размерам. Внешний радиус магнитосферы Сатурна в подсолнечной точке составляет 23 экваториальных радиуса планеты, а расстояние до ударной волны — 26 радиусов.
Для сравнения можно напомнить, что внешний радиус Земной магнитосферы в подсолнечной точке — около 10 земных радиусов. Так что даже по относительным размерам магнитосфера Сатурна превосходит земную более чем вдвое. Радиационные пояса Сатурна настолько обширны, что охватывают не только кольца, но и орбиты некоторых внутренних спутников планеты Сатурн. Как и ожидалось, во внутренней части радиационных поясов, которая «перегорожена» кольцами Сатурна, концентрация заряженных частиц значительно меньше». [9] Мифология НАСА: «Магнитосфера Сатурна открыта космическим аппаратом «Пионер-11» в 1979 году. По размерам уступает только магнитосфере Юпитера. Магнитопауза, граница между магнитосферой Сатурна и солнечным ветром, расположена на расстоянии порядка 20 радиусов Сатурна от его центра, а хвост магнитосферы протягивается на сотни радиусов. Магнитосфера Сатурна наполнена плазмой, продуцируемой планетой и её спутниками. Среди спутников наибольшую роль играет Энцелад, гейзеры которого выбрасывают водяной пар, часть которого ионизируется магнитным полем Сатурна». [10] Что там происходит в действительности можно определить только при помощи астрономических наблюдений. Но выдумки обманщиков про параметры магнитного поля Юпитера и Сатурна показывают, что прохождение АМС через зону, прилегающую к планетам гигантам, будет неосуществимым событием, мифологией!
Ссылки:
Интернет — ссылки проверены по состоянию на 21.02.21.
1.https://spaceworlds.ru/solnechnaya-sistema/planeta-jupiter/magnitnoe-pole.html
2.Магнитосфера Юпитера. https://ru.wikipedia.org/wiki/
3.https://www.theuniversetimes.ru/kak-apparat-yunona-budet-izuchat-magnitnoe-pole-yupitera.html
4.https://zen.yandex.ru/media/prosto_o_slozhnom/mojet-li-moscnaia-solnechnaia-vspyshka-unichtojit-vsiu-elektroniku-na-planete
5.https://ria.ru/20190514/1553490048.html
6.https://sreda.temadnya.com/1543606467111946437/otkuda-berutsya-magnitnye-buri-i-kak-oni-vozdejstvuyut-na-zemlyu/
7.https://docplayer.ru/28554581-Vozdeystvie-rentgenovskogo-izlucheniya-na-elektronnye-ustroystva-i-komponenty-tehpodderzhka.html
8.Интегральная схема. https://ru.wikipedia.org/wiki/
9.http://planetoved.ru/magsat.html
10.Сатурн.https://ru.wikipedia.org/wiki/
ГЛАВА 4. ГРАВИТАЦИОННЫЕ МАНЕВРЫ АМС США
Главным сомнением в исследовании американской версии о полетах АМС США в дальний космос являются голословные утверждения о том, что с помощью «гравитационных маневров» американские АМС, не имея запасов горючего и мощных двигателей, получают приращение скорости около планет гигантов и других планет. При этом гравитационное поле Юпитера, Сатурна на американские аппараты не действуют, эти станции США не становятся искусственными спутниками больших планет. Этот маневр осуществить на самом деле не так просто, как представляют американские сказочники: «Гравитационный манёвр подразумевает сближение совершающего орбитальный космический полёт аппарата с достаточно массивным небесным телом (планетой или спутником