litbaza книги онлайнРазная литератураХранители времени. Реконструкция истории Вселенной атом за атомом - Дэвид Хелфанд

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 66 67 68 69 70 71 72 73 74 ... 89
Перейти на страницу:
по всей видимости, они не менялись с момента возникновения, в то время как в других, которые, возможно, произошли от дифференцированных астероидов, есть примеси металлов. Некоторое количество метеоритов происходит с Луны и Марса; когда большой метеор сталкивается с одной из этих планет, он выбрасывает осколки коры в космос, где они блуждают, пока не столкнутся с Землей.

Самые примитивные и наименее измененные метеориты, на долю которых приходится чуть менее 5 % от общего количества метеоритов, достигающих Земли, – это углеродистые хондриты. Иногда в них содержится много воды (от нескольких процентов до более 20 %), так что во время формирования они не могли нагреваться до высоких температур, иначе вода испарилась бы в космос. В главе 13 мы упоминали, что многие из них богаты органическими соединениями, в том числе аминокислотами. Однако сейчас нам интереснее всего то, что в них также присутствуют хондры и включения, богатые Кальцием и Алюминием (CAI), самые ранние твердые соединения, образовавшиеся в молодой солнечной туманности.

Хондры – это небольшие минеральные шарики размером от сотой доли миллиметра до 1 см в поперечнике. В основном они состоят из Кремния и Кислорода с примесями различных количеств Алюминия, Магния, Калия, Кальция, Фосфора, Хрома и других подобных элементов от номера 11 (Натрий) и номера 26 (Железо) в Периодической таблице (причину, по которой диапазон именно такой, мы раскроем в главе 16). Полагают, что хондры – это остатки пылинок из солнечной туманности, стремительно (за считаные минуты) расплавившихся при нагревании до температуры примерно 1000 К. Источник этого мгновенного нагрева неизвестен, но возможно, речь идет о солнечных вспышках; об ударных волнах во вращающемся диске вещества, в который они были впечатаны; о столкновениях с более крупными телами и так далее. После нагревания они снова уплотняются, обретают твердую форму и объединяются с крупными телами, врастая в жильную породу, скажем, астероида. Одни хондриты похожи на стекло (их молекулы расположены в неправильном порядке), другие – на кристаллы (их молекулы образуют в высшей степени правильную решетку).

CAI обнаружены только в углистых хондритах. Они похожи на хондры, но образуются, по-видимому, при более высокой температуре (более 1300 К); о том, что появилось раньше – хондры или CAI, – по-прежнему спорят, хотя недавние данные, о которых мы еще поговорим, предполагают, что последние возникли в первый миллион лет существования Солнечной системы. Они состоят из различных минералов, таких как анортит (CaSi2Al2O8), перовскит (CaTiO3), форстерит (Mg2SiO4) и многих других.

День рождения

Чтобы установить возраст столь древнего явления, как Солнечная система, требуются радиоактивные изотопы с длительным периодом полураспада (1 миллиард лет и более). Однако мы не можем применить метод простых «накопительных часов», в которых один радиоактивный изотоп распадается на стабильный дочерний изотоп, если мы не знаем, сколько дочернего изотопа было там изначально. Отсутствие геологов, которые могли бы застать формирование Солнечной системы, ставит нас в затруднительное положение. Но разрешить эту дилемму нам позволяет хитрый метод изохрон (буквально «равных времен»). В качестве примера я покажу изохронное построение на основе соотношения Рубидия и Стронция, при помощи которого определяли возраст хондр, а также многих горных пород с Земли и Луны (рис. 15.1). Результаты датирования по свинцово-свинцовому отношению, немного усложненному варианту этого базового метода, показывают наиболее точное время рождения Солнечной системы, и рассказ о них последует сразу же за этим первоначальным объяснением.

Рубидий‐87 (87Rb) подвергается стандартному бета-распаду с образованием Стронция‐87 (87Sr) путем выброса электрона и антинейтрино; период полураспада составляет 49 миллиардов лет. Проблема в том, что неизвестное количество 87Sr присутствует в образце еще до того, как радиогенные атомы этого изотопа начнут появляться после распада Рубидия. Чтобы решить эту проблему, мы также измеряем количество 86Sr, стабильного нерадиогенного изотопа, в образце. Алгебраические уравнения, необходимые для однозначного установления возраста выборки, указаны в примечаниях3.

Рис. 15.1. Изохронная кривая для рубидий-стронциевого метода датирования. Наклон линии позволяет однозначно определить возраст рассматриваемого минерала, в данном случае по метеоритам, образовавшимся в момент рождения Солнечной системы (см. текст и вставку 15.1 в примечаниях)

С учетом того, насколько долгий период полураспада характерен для Рубидия, с момента возникновения Солнечной системы распалось менее 9 %. Но период полураспада Урана‐238 почти идеально соответствует времени, которое мы пытаемся измерить, – 4,5 миллиарда лет. Для метеоритных хондр и CAI наиболее точное время удалось установить с помощью вариации уран-свинцового метода (описанного в главе 9) – так называемого датирования по свинцово-свинцовому отношению.

Напомним, что 238U распадается до 206Pb, а 235U – до 207Pb. Кроме того, существует нерадиогенный изотоп свинца 204Pb. Построив график зависимости 207Pb/206Pb от 204Pb/206Pb (и приняв во внимание очень небольшие изменения начальных соотношений 235U/238U в солнечной туманности), можно построить изохроны и получить возраст CAI из метеорита Ефремовка, составляющий 4567,35 ± 0,28 миллиона лет, тогда как возраст хондр из других метеоритов варьируется от 4567,32 до 4564,71 миллиона лет4. Помимо того что это число легко запомнить (4–5–6–7 миллионов лет назад), оно наводит на мысль, что CAI и самые ранние хондры образовались в одно и то же время – хотя формирование последних, возможно, продлилось дольше, более 2 или 3 миллионов лет. Точность этой даты заслуживает внимания: погрешность в 0,28 миллиона лет из общей суммы в 4567 миллионов лет эквивалентна тому, что вы можете узнать, сколько мне лет, с точностью до 1,5 дня, что невозможно ни с радиоизотопным датированием, ни без него!

Прежде начала

Помимо долгоживущих радиоактивных изотопов, присутствующих в ранней Солнечной системе и помогающих нам определить ее возраст, существуют также продукты распада гораздо более короткоживущих изотопов. Один из тех, чья роль была явно важной (но чье происхождение спорно), – это Магний (26Mg), который образуется при распаде Алюминия (26Al) с периодом полураспада всего 717 000 лет. В данном случае имеет место обратный бета-распад, который приводит к тому, что ядро опускается на одну ступень в Периодической таблице за счет испускания позитрона. Он происходит с выделением очень большого количества энергии и дает 4 миллиона электронвольт (МэВ) за один распад. Кроме того, Магний остается в возбужденном состоянии и впоследствии испускает фотон гамма-излучения с энергией 1,808 Мэ В.

Изотоп 26Al образуется в массивных звездах на различных стадиях ядерного синтеза (см. гл. 16). В редких, очень массивных звездах (масса которых более чем в тридцать-сорок раз превышает массу Солнца), 26Al может быть извлечен из недр и унесен в космос сильными звездными ветрами, характерными для таких звезд на поздних стадиях их жизни. У всех звезд, масса которых превышает массу Солнца более чем в 8,5–10 раз и которые заканчивают свою жизнь во взрыве, их 26Al распределяется по космосу вместе с другими элементами, порожденными звездой. Мы знаем, что эти

1 ... 66 67 68 69 70 71 72 73 74 ... 89
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?