Шрифт:
Интервал:
Закладка:
Вакуум можно представлять себе как резервуар энергии. Виртуальные частицы — это частицы, возникающие из вакуума и на время одалживающие у него часть энергии. Они существуют только одно мгновение, а затем возвращаются обратно в вакуум, унося с собой энергию, которую одолжили. Эта энергия может вернуться на свое первоначальное место, или может быть передана частицам, находящимся в другом месте.
Квантово-механический вакуум — беспокойное место. И хотя вакуум по определению пуст, квантовые эффекты приводят к тому, что он кишит виртуальными частицами и античастицами, которые рождаются и уничтожаются, даже несмотря на то, что стабильные долгоживущие частицы отсутствуют. В принципе могут рождаться любые пары частиц и античастиц, но на очень короткое время, что не позволяет их непосредственно наблюдать. Однако каким бы кратким ни было их существование, мы должны учитывать виртуальные частицы, так как несмотря ни на что они оставляют свои отпечатки на взаимодействиях долгоживущих частиц.
Наличие виртуальных частиц приводит к измеряемым следствиям, так как они влияют на взаимодействия реальных физических частиц, входящих в область взаимодействия и покидающих ее. За краткое время своего существования виртуальная частица может пролететь от одной реальной частицы к другой, прежде чем исчезнуть и вернуть свой энергетический долг вакууму. Таким образом, виртуальные частицы выступают в качестве посредников, влияющих на взаимодействия долгоживущих стабильных частиц.
Например, фотон на рис. 47 (стр. 137), обмен которым порождал классическое электромагнитное взаимодействие, был на самом деле виртуальным фотоном. Его энергия не равнялась энергии реального фотона, но этого и не требовалось. Нужно было всего лишь, чтобы он существовал достаточно долго, чтобы передать электромагнитное взаимодействие и позволить взаимодействовать реальным заряженным частицам.
Другой пример виртуальных частиц показан на рис. 59. Здесь фотон влетает в область взаимодействия, рождается виртуальная электрон-позитронная пара, а затем эта пара поглощается в другом месте. В том месте, где частицы поглощаются, из вакуума возникает другой фотон, который уносит энергию, временно одолженную промежуточной электрон-позитронной парой. Исследуем одно примечательное свойство взаимодействия этого типа.
Почему интенсивность взаимодействия зависит от расстояния?
Интенсивность известных нам взаимодействий зависит от энергий участвующих во взаимодействиях частиц и расстояний между ними, и частично эта зависимость определяется виртуальными частицами. Например, интенсивность электромагнитного взаимодействия меньше, когда два электрона удалены на большее расстояние друг от друга. (Напомним, что это квантово-механическое уменьшение существует дополнительно к классической зависимости электромагнетизма от расстояния.) Следствия, к которым приводят виртуальные частицы и зависимость взаимодействий от расстояния, вполне реальны; теоретические предсказания и эксперименты очень хорошо согласуются друг с другом.
Причина того, что параметры эффективной теории, например интенсивность взаимодействий, зависят от энергий и расстояния между участвующими частицами, вытекает из свойства квантовой теории поля, которое физик Джонатан Флинн шутливо назвал анархическим принципом [119]. Этот принцип следует из квантовой механики, которая утверждает, что все взаимодействия частиц, которые могут случиться, случаются. В квантовой теории поля все, что не запрещено, произойдет.
Назовем путем каждый отдельный процесс, в котором участвует конкретная группа физических частиц. Путь может как включать, так и не включать виртуальные частицы. Если верно первое, будем называть путь квантовым вкладом. Квантовая механика утверждает, что в результирующую интенсивность взаимодействия вносят вклад все возможные пути. Например, физические частицы могут превращаться в виртуальные частицы, которые, в свою очередь, могут взаимодействовать друг с другом и затем превращаться в другие физические частицы. В таком процессе могут вновь возникнуть первоначальные физические частицы или эти частицы могут превратиться в другие физические частицы. И хотя виртуальные частицы не могут долго существовать, что не позволяет нам непосредственно их наблюдать, они влияют на то, как реальные наблюдаемые частицы взаимодействуют друг с другом.
Попытку уберечь виртуальные частицы от участия во взаимодействии можно сравнить с такой ситуацией: допустим, вы поделились секретом с одним вашим приятелем и надеетесь, что этот секрет не достигнет ушей другого вашего приятеля. Вы знаете, что рано или поздно кто-нибудь из «промежуточных виртуальных» приятелей выдаст ваш секрет и расскажет его этому другому приятелю. Даже если вы уже сами рассказали ему, в чем дело, сам факт, что ваши виртуальные приятели обсуждали с ним ваш секрет, будет влиять на его мнение о предмете. На самом деле его мнение будет суммой мнений всех, с кем он разговаривал.
В передаче взаимодействий между физическими частицами играют роль не только прямые взаимодействия между ними, но и непрямые взаимодействия, содержащие виртуальные частицы. Точно так же, как на мнение вашего приятеля оказывают влияние мнения всех разговаривавших с ним, окончательное взаимодействие между частицами есть сумма всех возможных вкладов, включая вклады от виртуальных частиц. Поскольку важность вклада виртуальных частиц зависит от расстояний, интенсивность взаимодействий также зависит от расстояния.
Метод ренормализационной группы дает точные указания, как вычислить вклад виртуальных частиц в любое взаимодействие. Все вклады промежуточных виртуальных частиц суммируются, и это либо усиливает, либо ослабляет интенсивность взаимодействий калибровочных бозонов.
Непрямые взаимодействия играют более важную роль, когда взаимодействующие частицы находятся дальше друг от друга. Большее расстояние аналогично тому, что вы рассказываете свой секрет большему числу «виртуальных» приятелей. Хотя вы не можете быть уверены в том, что каждый отдельный приятель выдаст ваш секрет, но чем большему количеству приятелей вы расскажете его, тем больше вероятность, что кто-то «проколется». Всякий раз, когда существует путь, по которому виртуальные частицы могут дать вклад в полную интенсивность взаимодействия, квантовая механика гарантирует, что это произойдет. При этом величина влияния виртуальных частиц на интенсивность взаимодействия зависит от расстояния, на которое распространяется сила взаимодействия.
Однако реальные вычисления по методу ренормализационной группы еще умнее, так как они также суммируют вклады бесед приятелей друг с другом. Более ясная аналогия со вкладами за счет виртуальных частиц напоминает пути документа, проходящего сквозь большое бюрократическое учреждение. Если человек, находящийся на вершине иерархии, посылает письмо, оно немедленно проходит сквозь учреждение. Но послания кого-то, находящегося на более низком уровне иерархии, будут подвергнуты проверке его начальниками. Если письмо исходит от кого-то, находящегося на еще более низком уровне, оно сначала может быть втянуто в бюрократическую машину и пройти все ее уровни, прежде чем в конце концов достигнет места назначения. В этом случае бюрократы на каждом уровне будут рассылать документ всем работникам своего уровня, прежде чем послать его последовательно на более высокий уровень. Только достигнув верхних эшелонов, документ будет выпущен из учреждения. То послание, которое возникнет в этом случае, будет, вообще говоря, не совпадать с оригиналом, а представлять собой документ, многократно профильтрованный многоэтажной бюрократической машиной.