Шрифт:
Интервал:
Закладка:
115. Crawford, J. C., Boulet, M., & Drea, C. M. (2010). Smelling wrong: Hormonal contraception in lemurs alters critical female odour cues. Proceedings of the Royal Society B: Biological Sciences, 278(1702), 122–130. doi:10.1098/rspb.2010.1203.
116. Penn, D. J., Oberzaucher, E., Grammer, K. et al. (2006). Individual and gender fingerprints in human body odour. Journal of the Royal Society Interface, 4(13), 331–340. doi:10.1098/rsif.2006.0182; Weisfeld, G. E., Czilli, T., Phillips, K. A. et al. (2003). Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance. Journal of Experimental Child Psychology, 85(3), 279–295. doi:10.1016/s0022-0965(03)00061-4; Roberts, S. C., Gosling, L. M., Spector, T. D. et al. (2005). Body odor similarity in noncohabiting twins. Chemical Senses, 30(8), 651–656. doi:10.1093/chemse/bji058.
117. Rikowski, A., & Grammer, K. (1999). Human body odour, symmetry and attractiveness. Proceedings of the Royal Society B: Biological Sciences, 266(1422), 869–874. doi:10.1098/rspb.1999.0717; Thornhill, R., & Gangestad, S. W. (1999). The scent of symmetry a human sex pheromone that signals fitness? Evolution and Human Behavior, 20(3), 175–201. doi:10.1016/s1090-5138(99)00005-7; Havlicek, J., & Lenochova, P. (2006). The effect of meat consumption on body odor attractiveness. Chemical Senses, 31(8), 747–752. doi:10.1093/chemse/bjl017.
118. Singh, D., & Bronstad, P. M. (2001). Female body odour is a potential cue to ovulation. Proceedings of the Royal Society B: Biological Sciences, 268(1469), 797–801. doi:10.1098/rspb.2001.1589; Kuukasjarvi, S. (2004). Attractiveness of women’s body odors over the menstrual cycle: The role of oral contraceptives and receiver sex. Behavioral Ecology, 15(4), 579–584. doi:10.1093/beheco/arh050.
Глава 7
119. Ellis, B. J., Oldehinkel, A. J., & Nederhof, E. (2016). The adaptive calibration model of stress responsivity: An empirical test in the Tracking Adolescents Individual Lives Survey study. Development and Psychopathology, 29(03), 1001–1021. doi:10.1017/s0954579416000985.
120. Foley, P., & Kirschbaum, C. (2010). Human hypothalamus–pituitary–adrenal axis responses to acute psychosocial stress in laboratory settings. Neuroscience and Biobehavioral Reviews, 35(1), 91–96. doi:10.1016/j.neubiorev.2010.01.010.
121. Kirschbaum, C., Pirke, K., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”—a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1–2), 76–81. doi:10.1159/000119004.
122. Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355–391. doi:10.1037/0033-2909.130.3.355; Kudielka, B. M., Hellhammer, D. H., & Kirschbaum, C. (2007). Ten years of research with the Trier Social Stress Test—revisited. In Social Neuroscience: Integrating Biological and Psychological Explanations of Social Behavior (pp. 56–83). New York: Guilford Press.
123. Roney, J. R. (in preparation). Cortisol increases in response to sexual attraction; Flinn, M. V., Nepomnaschy, P. A., Muehlenbein, M. P., & Ponzi, D. (2011). Evolutionary functions of early social modulation of hypothalamic-pituitary-adrenal axis development in humans. Neuroscience and Biobehavioral Reviews, 35(7), 1611–1629. doi:10.1016/j.neubiorev.2011.01.005.
124. Kirschbaum, C., Platte, P., Pirke, K., & Hellhammer, D. (1996). Adrenocortical activation following stressful exercise: Further evidence for attenuated free cortisol responses in women using oral contraceptives. Stress and Health, 12(3), 137–143. doi:10.1002/(SICI)1099-1700(199607)12:33.0.CO;2-C.
125. Bouma, E. M., Riese, H., Ormel, J. et al. (2009). Adolescents’ cortisol responses to awakening and social stress: Effects of gender, menstrual phase and oral contraceptives. The TRAILS study. Psychoneuroendocrinology, 34(6), 884–893. doi:10.1016/j.psyneuen.2009.01.003.
126. Sapolsky, R. M. (2004). Why zebras don’t get ulcers. New York: Henry Holt and Co.
127. Quervain, D. D., Schwabe, L., & Roozendaal, B. (2016). Stress, glucocorticoids and memory: Implications for treating fear-related disorders. Nature Reviews Neuroscience, 18(1), 7–19. doi:10.1038/nrn.2016.155; Strelzyk, F., Hermes, M., Naumann, E. et al. (2012). Tune it down to live it up? Rapid, nongenomic effects of cortisol on the human brain. Journal of Neuroscience, 32(2), 616–625. doi:10.1523/jneurosci.2384-11.2012.
128. Lupien, S., & McEwen, B. (1997). The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Research Reviews, 24(1), 1–27. doi:10.1016/s0165-0173(97)00004-0; McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43(1), 2–15. doi:10.1016/s0018-506x(02)00024-7; Seeman, T. E., Singer, B. H., Rowe, J. W. et al. (1997). Price of adaptation: Allostatic load and its health consequences. Archives of Internal Medicine, 157(19), 2259. doi:10.1001/archinte.1997.00440400111013; Weymar, M., Löw, A., Öhman, A., & Hamm, A. O. (2011). The face is more than its parts: Brain dynamics of enhanced spatial attention to schematic threat. NeuroImage, 58(3), 946–954. doi:10.1016/j.neuroimage.2011.06.061; Yuen, E. Y., Liu, W., Karatsoreos, I. N.et al. (2009). Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proceedings of the National Academy of Sciences, 106(33), 14075–14079. doi:10.1073/pnas.0906791106.