litbaza книги онлайнРазная литератураКраткая история астрономии. Том 11. Темная материя - Владимир Анатольевич Моисеев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 74 75 76 77 78 79 80 81 82 83
Перейти на страницу:
астрономы должны обнаружить все эти процессы, и убедиться, что MOND согласуется с наблюдениями. Впрочем, существует сложность, которая сильно влияет на совместимость MOND с наблюдениями.

               В изолированной системе, например, один спутник, вращающийся вокруг планеты, эффект MOND приводит к росту скорости за пределы данного диапазона (на самом деле, ниже заданного ускорения, но для круговой орбиты это не имеет значения), что зависит от массы как планеты, так и спутника. Однако, если та же система будет вращаться вокруг звезды, планета и спутник будут ускоряться в гравитационном поле звезды. По этой причине типичное ускорение любого физического процесса — не единственный параметр, который должны рассматривать астрономы. Настолько же важной является среда, в которой происходит процесс, то есть все внешние силы, которыми, как правило, пренебрегают.

               Это ограничивает применение MOND, потому что все эксперименты, проведённые на Земле или в её окрестностях, подчинены гравитационному полю Солнца, и это поле настолько сильно, что все объекты в Солнечной системе подвергаются ускорениям большим, чем коэффициент теории MOND. Это объясняет, почему выравнивание кривых вращения галактик, или MOND эффект, не был обнаружен до начала 1980-х годов, когда астрономы впервые собрали эмпирические данные о вращении галактик.

               Ожидается, что только галактики и другие большие системы продемонстрируют динамику, которая позволит астрономам убедиться, что MOND согласуется с наблюдениями. С момента появления теории Милгрома в 1983 году наиболее точные данные были получены из наблюдений далёких галактик и соседей Млечного Пути. В пределах известных данных для галактик MOND остаётся в силе. Что касается Млечного Пути, то он усеян облаками газа и межзвёздной пыли, и из-за этого до сих пор нет возможности определить надёжно кривую вращения галактики. Условия для проведения эксперимента, который мог бы подтвердить или опровергнуть MOND, существуют лишь за пределами Солнечной системы.

               В поисках наблюдений для проверки своей теории Милгром заметил, что особый интерес представляет редкий класс объектов — галактики с низкой поверхностной яркостью (LSB, Low surface brightness galaxy). В них почти все звёзды находятся в пределах пологой части кривой вращения. Таким образом, Милгром смог сделать прогноз, что LSB должны иметь кривую вращения, которая является практически пологой, и соотношение между плоской скоростью и массой LSB то же, что и у более ярких галактик.

               Действительно, большинство наблюдаемых LSB соответствуют кривой вращения, предсказанной MOND.

               Кроме LSB, ещё одной проверкой MOND является предсказание скорости галактик, вращающихся вокруг центра скоплений галактик (например, наша галактика является частью сверхскопления Девы). MOND предсказывает скорость вращения этих галактик вокруг центра и распределение температур, которые противоречат наблюдениям.

               Компьютерное моделирование показало, что MOND, как правило, довольно точна в прогнозировании отдельных кривых вращения галактик для всех видов галактик: спиральных, эллиптических, карликовых и т. д. Однако MOND и подобные MOND теории не так хороши в масштабах скоплений галактик или космологических структур. Обнаружение каких-либо частицы тёмной материи, например, вимпов, мог бы опровергнуть MOND.

               Ли Смолин (и его коллеги) безуспешно пытался получить теоретическую основу для MOND из квантовой теории гравитации. Его вывод — «MOND представляет собой дразнящую загадку, но она не из тех, которые могут быть решены сейчас».

               В 2011 году профессор астрономии Университета Мэриленда Стейси Макго проверил вращение богатых газом галактик, которые имеют относительно меньшее число звёзд, так что большая часть их массы сосредоточена в межзвёздном газе. Это позволило более точно определить массу галактик, поскольку вещество в форме газа легче увидеть и измерить, чем вещество в виде звёзд или планет. Макго исследовал выборку из 47 галактик и сравнил массу и скорости вращения каждой с величинами, прогнозируемыми MOND. Все 47 галактик соответствовали или оказались очень близки к прогнозам MOND; классическая модель тёмной материи выполнялась хуже. С другой стороны, во время исследований 2011 года по наблюдению в скоплении галактик гравитационно-индуцированного красного смещения были обнаружены результаты, которые в точности соответствовали общей теории относительности, но противоречили MOND.

               Самыми сложными для объяснения в рамках МОНД считаются результаты о распределении масс газа, полученные по рентгеновскому излучению, и гравитирующих масс, полученные по гравитационному линзированию, в сталкивающихся скоплениях галактик, например, в скоплении Пуля. Если МОНД верна, и тёмной материи не существует, то распределения масс должны совпадать, что сильно противоречит наблюдениям. Хотя сторонники МОНД утверждают, что могут объяснить эти расхождения, большинство астрономов считают эти данные фальсифицирующим МОНД экспериментом.

Глава 10-20-5

Дискуссии и критика  

В августе 2006 года появилась серьёзная критика MOND. Она основана на скоплении Пули, системы из двух сталкивающихся скоплений галактик. В большинстве случаев, когда присутствуют явления, связанные с MOND либо тёмной материей, они кажутся исходящими из мест с аналогичными центрами тяжести. Но эффект тёмной материи в этой системе из двух сталкивающихся скоплений галактик, по-видимому, исходит из точек в пространстве, отличных от центра масс видимого вещества в системе, который необычайно легко разглядеть из-за высоких энергий столкновения газа в районе столкновений галактических скоплений. Сторонники MOND признают, что чисто барионная MOND не может объяснить эти наблюдения. Чтобы спасти гипотезу, было предложено включить в MOND обычные горячие нейтрино с массой 2 эВ.

               C. Сиврам заметил, что характерные ускорения  для шаровых скоплений, спиральных галактик, скоплений галактик и всей Вселенной поразительно близки к критическому ускорению  из MOND. Хасмух К. Танк попытался объяснить подобные соответствия как следствия из нового закона о равенстве гравитационной потенциальной энергии и энергии масс достаточно независимых систем материи. В этой работе он показал также, что тщательно измеренные ускорения в сторону Солнца космических зондов Pioneer-10, Pioneer-11, Galileo и Ulyssus довольно близки к критическому ускорению MOND; «космологическое красное смещение», выраженное как торможение космических фотонов, поразительно совпадает с ним же. Танк также предложил множество теоретических объяснений нового закона равенства потенциальной энергии и энергии масс. Это приводит к возможности того, что закон сохранения энергии является более фундаментальным, чем фундаментальные силы.

Глава 10-20-6

Скаляр-тензор-векторная теория гравитации 

Скаляр-тензор-векторная теория гравитации (Tensor-vector-scalar gravity (TeVeS)) — это предлагаемая релятивистская теория, которая эквивалентна модифицированной ньютоновской динамике в нерелятивистском пределе. Она направлена на то, чтобы объяснить проблему вращения галактик без привлечения тёмной материи. Представленная Якобом Бекенштейном в 2004 году, она включает в себя различные динамические и нединамические тензорные поля, векторные поля и скалярные поля.

               Прорыв TeVeS по отношению к MOND связан с тем, что она может объяснить явление гравитационного линзирования — космического

1 ... 74 75 76 77 78 79 80 81 82 83
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?