litbaza книги онлайнРазная литератураИнтернет-журнал "Домашняя лаборатория", 2007 №10 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 188
Перейти на страницу:
планетезимали и дали начало планетам и их спутникам.

Вторая половина нашего века, однако, стала временем возвращения к концепции изначально холодной Земли. Во-первых, нашлись серьезные, чисто астрономические, возражения против планетезимальной теории. Г. Рессел, например, обратил внимание на то простое обстоятельство, что если между Солнцем и проходящей звездой протянется лента из звездного вещества, то ее средняя часть (где притяжение двух светил взаимно уравновешивается) должна будет пребывать в полной неподвижности. И напротив, выяснилось, что некоторые оказавшиеся ошибочными положения Лапласа вполне могут быть откорректированы в рамках дальнейшего развития небулярной теории. (В качестве примера могут быть приведены гипотеза О.Ю. Шмидта — в ней газо-пылевое облако захватывается уже существующим на тот момент Солнцем, или более популярная ныне модель К. фон Вайцзекера; в последней вращающаяся небула представляет собой уже не гомогенный шар, как у Лапласа, а систему разноскоростных вихрей, несколько напоминающую шарикоподшипник. Ныне полагают также, что газ и пыль во вращающейся газо-пылевой туманности ведут себя по разному: пыль собирается в плоский экваториальный диск, а газ образует почти шарообразное облако, густеющее по направлению к центру туманности. Впоследствии пыль экваториального диска слипается в планеты, а газ под собственной тяжестью разогревается так, что "вспыхивает" в виде Солнца).

Более существенным для победы "холодной" концепции, однако, оказалось другое: был найден убедительный и при этом достаточно простой ответ на вопрос — откуда же берется тепло, разогревшее недра изначально холодной Земли до столь высоких температур? Этих источников тепла, как сейчас полагают, два: энергия распада радиоактивных элементов и гравитационная дифференциация недр. С радиоактивностью все достаточно ясно, да и источник это второстепенный — на него приходится, согласно современным оценкам, не более 15 % энергии разогрева. Идея же гравитационной дифференциация недр (ее детальную разработку связывают с именем О.Г. Сорохтина) заключается в следующем.

Зная массу и объем Земли (они были рассчитаны еще в XVIII веке), легко определить усредненную плотность земного вещества — 5,5 г/см3. Между тем, плотность доступных нам для прямого изучения горных пород вдвое меньше: средняя плотность вещества земной коры составляет 2,8 г/см3. Отсюда ясно, что вещество в глубоких недрах Земли должно иметь плотность много выше средней.

Известно, что почти девать десятых массы Земли приходится на долю всего четырех химических элементов — кислорода (входящего в состав окислов), кремния, алюминия и железа. Поэтому можно с достаточной уверенностью утверждать, что более "легкие" наружные слои планеты состоят преимущественно из соединений кремния (алюмосиликатов), а "тяжелые" внутренние — железа.

В момент образования Земли ("горячим" или "холодным" способом — для нас сейчас неважно) "тяжелые" и "легкие" элементы и их соединения не могли не быть полностью перемешаны. Дальше, однако, начинается их гравитационная дифференциация: под действием силы тяжести "тяжелые" соединения (железо) "тонут" — опускаются к центру планеты, а "легкие" (кремний) — "всплывают" к ее поверхности. Давайте теперь рассмотрим этот процесс в мысленно вырезанном вертикальном столбе земного вещества, основание которого — центр планеты, а вершина — ее поверхность. "Тонущее" железо постоянно смещает центр тяжести этого столба к его основанию. При этом потенциальная энергия столба (пропорциональная произведению массы тела на высоту его подъема, что в нашем случае составляет расстояние между центром Земли и центром тяжести столба) постоянно уменьшается. Суммарная же энергия Земли, в соответствии с законами сохранения, неизменна; следовательно, теряющаяся в процессе гравитационной дифференциации потенциальная энергия может преобразовываться лишь в кинетическую энергию молекул — то есть выделяться в виде тепла.

Расчеты геофизиков показывают, что эта энергия составляет чудовищную величину 4*1030 кал (что эквивалентно триллиону суммарных ядерных боезапасов всех стран мира). Этого вполне достаточно для того, чтобы — даже не прибегая к помощи энергии радиоактивного распада — разогреть недра изначально холодной Земли до расплавленного состояния. При этом, однако, рассчитывая тепловой баланс Земли за всю ее историю, геофизики пришли к выводу, что температура ее недр лишь местами могла доходить до 1600 °C, в основном составляя около 1200 °C; а это означает, что наша планета, вопреки бытовавшим ранее представлениям, никогда не была полностью расплавленной. Разумеется, планета постоянно теряет тепловую энергию, остывая с поверхности, однако этот расход в значительной степени (если не полностью) компенсируется излучением Солнца.

Итак, Земля на протяжении всей своей истории представляет собой твердое тело (более того: в глубинах, при высоких давлениях, очень твердое тело), которое, однако, парадоксальным образом ведет себя при очень больших постоянных нагрузках как чрезвычайно вязкая жидкость. Сама форма планеты — эллипсоид с чуть выпяченным Северным полюсом и чуть вдавленным Южным — идеально соответствует той, что должна принимать жидкость в состоянии равновесия. В толще этой "жидкости" постоянно происходят чрезвычайно медленные, но немыслимо мощные движения колоссальных масс вещества, с которыми связаны вулканизм, горообразование, горизонтальные перемещения континентов и т. д. — их закономерности мы будем обсуждать в следующей главе. Здесь важно запомнить, что источником энергии для всех этих процессов является, в конечном счете, все та же самая гравитационная дифференциация вещества в недрах планеты. Соответственно, когда этот процесс завершится полностью, наша планета станет геологически неактивной, "мертвой" — подобно Луне. Согласно расчетам геофизиков, к настоящему моменту уже 85 % имеющегося на Земле железа опустилось в ее ядро, а на "оседание" оставшихся 15 % потребуется еще около 1,5 млрд. лет.

В результате гравитационной дифференциации недра планеты оказывается разделенными (как молоко в сепараторе) на три основных слоя — "тяжелый", "промежуточный" и "легкий". Внутренний, "тяжелый" слой (с плотностью вещества около 8 г/см3) — центральное ядро, состоящее из соединений железа и иных металлов; из 6400 км, составляющих радиус планеты, на ядро приходится 2900 км. Поверхностный, "легкий" слой (плотность его вещества около 2,5 г/см3) называется корой. Средняя толщина коры всего-навсего 33 км; она отделена от нижележащих слоев поверхностью Мохоровичича, при переходе через которую скачкообразно увеличивается скорость распространения упругих волн. Между корой и ядром располагается "промежуточный" слой — мантия; ее породы имеют плотность около 3,5 г/см3 и находятся в частично расплавленном состоянии. Верхняя мантия отделена от нижней мантии лежащим в 60-250 км от поверхности расплавленным слоем базальтов — астеносферой; верхняя мантия вместе с корой образует твердую оболочку планеты — литосферу (рисунок 4). Именно в астеносфере находятся магматические очаги, питающие вулканы, деятельности которых Земля обязана своей подвижной оболочкой — гидросферой и атмосферой.

РИСУНОК 4. Структура недр планеты (со схематическим вулканом)

Согласно современным представлениям, атмосфера и гидросфера возникли в результате дегазации магмы, выплавляющейся при вулканических процессах из верхней мантии и создающей земную кору. Атмосфера и гидросфера состоят из легких летучих веществ (соединений водорода, углерода и азота), содержание которых на Земле в целом

1 ... 4 5 6 7 8 9 10 11 12 ... 188
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?