litbaza книги онлайнСовременная прозаКонец феминизма. Чем женщина отличается от человека - Александр Никонов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 79
Перейти на страницу:

В силу специфики своей деятельности в своём дальнейшем повествовании я буду иногда вынужден апеллировать к экспертам в области высшей математики. Я имею в виду тех, кто знает все четыре правила арифметики, а также умеет складывать дроби и в общих чертах знаком с таблицей умножения. Части текста, для понимания которых требуются столь специфические знания, я выделю курсивом.

Так вот, в этом учебном году я обнаружил, что среди пятидесяти моих учеников-первокурсников (у меня две группы) восемь человек считают, что три шестых (3/6) равно одной трети (1/3). Подчеркну: это молодые люди, которые только что сдали «научный БАК», то есть тот, в котором приоритет отдаётся математике и физике. Все эксперты, которым я это рассказывал, и которые не имеют опыта преподавания в парижских университетах, сразу же становятся в тупик. Пытаясь понять, как такое может быть, они совершают стандартную ошибку, свойственную всем экспертам: пытаются найти в этом логику, ищут (ошибочное) математическое рассуждение, которое может привести к подобному результату. На самом деле всё намного проще: им это сообщили в школе, а они, как прилежные ученики (а в университет попадают только прилежные ученики!), запомнили. Вот и всё. Я их переучил: на очередном занятии (темой которого вообще-то была производная функции) сделал небольшое отступление и сообщил, что 3/6 равно 1/2, а вовсе не 1/3, как считают некоторые из присутствующих. Реакция была такая: «Да? Хорошо…». Если бы я им сообщил, что это равно 1/10, реакция была бы точно такой же.

В предыдущие два учебных года процентов десять-пятнадцать моих студентов систематически обнаруживали другое, не менее «нестандартное» математическое знание: они полагали, что любое число в степени –1 равно нулю. Причём это была не случайная фантазия, а хорошо усвоенное знание, потому что проявлялось неоднократно (даже после моих возражений) и срабатывало в обе стороны: если обнаруживалось что-либо в степени –1, то оно туг же занулялось, и наоборот, если что-либо требовалось занулить, подгонялась степень –1. Резюме то же самое: их так научили.

Вот чему несчастных французских детей никак не могут по-настоящему научить, так это обращаться с дробями. Вообще, дроби (их сложение, умножение, а особенно деление) – постоянная головная боль моих студентов. Из своего пятилетнего опыта преподавания могу сообщить, что сколько-нибудь уверенно обращаться с дробями могли не больше десятой части моих первокурсников. Надо сказать, что арифметическая операция деления – это, пожалуй, самая трудная тема современного французского среднего образования. Подумайте сами, как объяснить ребёнку, что такое деление: небось, станете распределять поровну шесть яблочек среди троих мальчиков? Как бы не так. Чтобы рассказать, как учат делению во французской школе, я опять вынужден обращаться к экспертам. Пусть не все, но кое-кто из вас ещё помнит правило деления в столбик. Так вот, во французской школе операция деления вводится в виде формального алгоритма деления в столбик, который позволяет из двух чисел (делимого и делителя) путём строго определённых математических манипуляций получить третье число (результат деления). Разумеется, усвоить этот ужас можно только проделав массу упражнений, и состоят эти упражнения вот в чём: несчастным ученикам предъявляются шарады в виде уже выполненного деления в столбик, в котором некоторые цифры опущены, и эти отсутствующие цифры требуется найти. Естественно, после всего этого, что бы тебе ни сказали про 3/6, согласишься на что угодно.

Кроме описанных выше, так сказать, «систематических нестандартных знаний» (которым научили в школе), имеется много просто личных, случайных фантазий. Некоторые из них очень смешные. Например, один юноша как-то предложил переносить число из знаменателя в числитель с переменой знака. Другая студентка, когда косинус угла между двумя векторами у неё получился равным 8, заключила, что сам угол равен 360 градусов умножить на восемь, ну и так далее. У меня есть целая коллекция подобных казусов, но не о них сейчас речь. В конце концов, то, что молодые люди еще способны фантазировать, – это не так уж плохо. Думать в школе их уже отучили (а тех, кого ещё не отучили, в университете отучат – это уж точно), так пусть пока хоть так проявляют живость ума (пока они, живость и ум, ещё есть).

Довольно долго я никак не мог понять, как с подобным уровнем знаний все эти молодые люди сумели сдать БАК, задачи в котором, как правило, составлены на вполне приличном уровне и решить которые (как мне казалось) можно лишь обладая вполне приличными знаниями. Теперь я знаю ответ на этот вопрос. Дело в том, что практически все задачи, предлагаемые на БАКе, можно решить с помощью хорошего калькулятора – они сейчас очень умные, эти современные калькуляторы: и любое алгебраическое преобразование сделают, и производную функции найдут, и график её нарисуют. При этом пользоваться калькулятором при сдаче БАКа официально разрешено. А уж что-что, а быстро и в правильном порядке нажимать на кнопочки современные молодые люди учатся очень лихо. Одна беда – нет-нет да и ошибешься, в спешке не ту кнопочку нажмешь, и тогда получается конфуз. Впрочем, «конфуз» – это с моей, старомодной, точки зрения, а по их, современному, мнению – просто ошибка, ну что поделаешь, бывает. К примеру, один мой студент что-то там не так нажал, и у него получился радиус планеты Земля равным 10 миллиметрам. А, к несчастью, в школе его не научили (или он просто не запомнил), какого размера наша планета, поэтому полученные им 10 миллиметров его совершенно не смутили. И лишь когда я сказал, что его ответ неправильный, он стал искать ошибку. Точнее, он просто начал снова нажимать на кнопочки, но только теперь делал это более тщательно и в результате со второй попытки получил правильный ответ. Это был старательный студент, но ему было абсолютно «до лампочки», какой там радиус у Земли: 10 миллиметров или 6 400 километров, – сколько скажут, столько и будет. Только не подумайте, что проблему можно решить, запретив калькуляторы: в этом случае БАК просто никто не сдаст, дети после школы вынуждены будут вместо учебы в университетах искать работу, и одновременно без работы останется целая армия университетских профессоров – в общем, получится страшный социальный взрыв. Так что калькуляторы трогать не стоит, тем более что в большинстве случаев ученики правильно нажимают на кнопочки.

Теперь о том, как, собственно, учат математике и физике в университете. Что касается математики, то под этой вывеской в осеннем семестре изучаются три темы: тригонометрия (синусы, косинусы и т.д.), производные функций и несколько интегралов от стандартных функций – в общем, все то, что и так нужно было знать, чтобы сдать БАК. Но в университете, как это часто бывает, учат всё сначала, чтобы научить наконец «по-настоящему».

Что касается тригонометрии, то её изучение сводится к заучиванию таблицы значений синуса, косинуса и тангенса для стандартных углов 0, 30, 45, 60 и 90 градусов, а также нескольких стандартных соотношений между этими функциями. Старательные студенты, которых в действительности не так уж мало, всё это знают и так. Однако вот ведь какая закавыка, я каждый год упорно задаю своим ученикам один и тот же вопрос: кто может объяснить, почему синус 30 градусов равен 1/2? Я преподаю уже пять лет, и каждый год у меня около пятидесяти учеников; так вот, из двухсот пятидесяти моих учеников за всё время на этот вопрос мне не ответил ни один человек. Более того, по их мнению, сам вопрос лишён смысла: то, чему равны все эти синусы и косинусы (также, впрочем, как и все остальные знания, которыми их пичкали в школе, а теперь продолжают пичкать в университете), – это просто некая данность, которую нужно запомнить. И вот каждый год я, как последний зануда, пытаюсь их в этом разубеждать, пытаюсь рассказывать что откуда берется, какое отношение всё это имеет к миру, в котором мы живем, тужусь изо всех сил рассказывать так, чтобы было интересно, а они смотрят на меня, как на придурка, и терпеливо ждут, когда же я, наконец, угомонюсь и сообщу им что, собственно, нужно заучить на память. Своим большим успехом я считаю, если к концу семестра один или два человека из группы раз-другой зададут мне вопрос «почему?». Но достичь этого мне удаётся не каждый год…

1 ... 4 5 6 7 8 9 10 11 12 ... 79
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?