Шрифт:
Интервал:
Закладка:
Если у нас есть более точный измерительный прибор, чем мерная рейка, то мы получим больше битов информации о длине того же стержня. Например, можно рассмотреть его под оптическим микроскопом. Тогда мы сможем увидеть детали, размер которых по порядку равен длине волны видимого света – немного меньше микрона, или одной миллионной доли метра. И если мы приложим к линейке микроскоп, мы сможем измерить длину стержня с точностью до микрона. Микроскоп позволит найти длину стержня с точностью в шесть значащих цифр, что соответствует примерно двадцати битам информации. Сходную степень точности можно получить с помощью интерферометра – устройства, измеряющего длину объекта длинами световых волн. Если интерферометр использует волны длиной в один микрон, он определит длину нашего стержня как один миллион световых волн.
Существуют методы, которые могут дать еще большую степень точности. В принципе можно взять устройство под названием атомно-силовой микроскоп, которое показывает отдельные атомы на поверхности, и провести им вдоль прута, измеряя его длину по числу встреченных атомов. Расстояние между атомами – порядка одной десятимиллиардной метра (10–10 м), эту единицу называют «ангстрем». Это даст нам измерение с точностью до десятой цифры, или около тридцати трех битов информации о длине стержня.
Большей точности в измерении длины макроскопического объекта, такого как стержень, добиться трудно. В определенных случаях возможно измерить расстояние с намного более высокой степенью точности, например, как в экспериментах физика Нормана Рэмзи по поиску дипольного электрического заряда нейтрона. В них определялось расстояние, составляющее примерно одну миллиардную миллиардной миллиардной части метра!
Общее количество значений, которые может различать то или иное измерительное устройство, определяется как диапазон значений (например, один метр), в пределах которого это устройство может работать, деленный на предельную точность, с которой устройство может измерять (например, один миллиметр). Диапазон, разделенный на точность, показывает, сколько отдельных значений может зафиксировать данное устройство. Далее, количество доступной информации определяется количеством битов, необходимых для того, чтобы перечислить все доступные значения. Устройство, которое выдает 33 бита информации (точность до десятой цифры) о какой-либо непрерывной величине, можно считать очень точным.
Чтобы получить тридцать три бита информации о длине нашего стержня, нужно измерить его длину в атомах. Вообще же требуются героические усилия, чтобы выжать больше нескольких десятков битов информации об одной непрерывной величине, например о длине стержня. Но если мы используем много отдельных величин, чтобы записывать информацию, то можем быстро накопить много битов. В квантовом компьютере каждый атом хранит один бит; чтобы получить тридцать три бита, нужно всего тридцать три атома. Наш стержень содержит где-то миллиард миллиардов миллиардов атомов. Если бы каждый из них соответствовал одному биту, то все атомы стержня содержали бы миллиард миллиардов миллиардов битов – невообразимо больше, чем может содержаться в длине стержня как таковой.
Как правило, лучший способ получить больше информации – не увеличивать точность измерений непрерывной величины, а собирать измерения все большего и большего набора величин, каждое из которых может содержать всего несколько битов. Такой сбор битов, или цифровое представление, эффективен, потому что количество всех описанных ими альтернатив растет гораздо быстрее, чем количество битов.
Вспомните легендарного восточного правителя, который по глупости согласился вознаградить героя зернами пшеницы: одно зерно за первую клетку шахматной доски, два зерна за вторую, четыре за третью и так далее, вплоть до двух в шестьдесят третьей степени (263) за последнюю, 64-ю клетку. Общее количество зерен при этом составляет по порядку величины 10 миллиардов миллиардов, а если точно – 18 446 744 073 709 551 615. И если длина каждого зерна равна всего одному миллиметру, все вместе они заполнят объем почти в 20 куб. км!
Как показывает этот пример, нужно совсем немного битов, чтобы выделить одну из очень большого количества альтернатив. Чтобы присвоить каждому из зерен на шахматной доске уникальный штрихкод, потребовалось бы всего 64 бита, или 64 элемента информации. Имея 300 битов, можно присвоить уникальный штрихкод каждой из 1090 элементарных частиц во Вселенной. Астрономически огромное количество возможных генетических кодов – причина невероятного разнообразия живых существ, но информация, которая позволяет воспроизвести любой из этих кодов, может быть сохранена в одной крошечной хромосоме.
«Но разве информация не должна иметь какой-то смысл?» – спрашивает студент.
«Конечно, когда мы думаем об информации, то обычно связываем ее с каким-то смыслом», – отвечаю я. «Но что такое “смысл”?»
Философы пытаются это выяснить уже тысячи лет, с переменным успехом. Но это очень трудно, потому что смысл информации очень сильно зависит от того, как ее нужно интерпретировать. Если вы не знаете, как интерпретировать сообщение, то не понимаете его смысла. Например, если я говорю вам «да», а вы не задавали вопрос, то вы не поймете, значит мое «да». Но если вы спросите: «Можно мне взять еще один кусок пирога?», и я скажу: «Да», то вы поймете, что я имею в виду. Если вы спросите: «Сколько будет два плюс два?», а я скажу: «Да», то вы опять не поймете, что я имею в виду (хотя, наверно, начнете думать, что у меня есть только один ответ на любой вопрос). Но если вы поинтересуетесь: «Сколько будет два плюс два?», и я скажу: «Четыре», то вы поймете этот ответ. Смысл чем-то похож на порнографию: когда мы его видим, то сразу узнаем.
Вернемся к нашей строке битов: 1001001 1101110 0100000 1110100 1101000 1100101 0100000 1100010 1100101 1100111 1101001 1101110 1101110 1101001 1101110 1100111. Если интерпретировать это сообщение согласно коду ASCII, эта строка означает «В начале…». Но само по себе, без указания на то, как его нужно интерпретировать, оно ничего не означает, кроме ряда двоичных цифр. Смысл зависит только от интерпретации, как в следующем разговоре между Алисой и Шалтаем-Болтаем:
– Я не понимаю, при чем здесь «слава»? – спросила Алиса.
Шалтай-Болтай презрительно улыбнулся.
– И не поймешь, пока я тебе не объясню, – ответил он. – Я хотел сказать: «Разъяснил, как по полкам разложил!»
– Но «слава» совсем не значит: «разъяснил, как по полкам разложил!» – возразила Алиса.
– Когда я беру слово, оно означает то, что я хочу, не больше и не меньше, – сказал Шалтай презрительно.
– Вопрос в том, подчинится ли оно вам, – сказала Алиса.
– Вопрос в том, кто из нас здесь хозяин, – сказал Шалтай-Болтай.
– Вот в чем вопрос![5]
Льюиса Кэрролла, автора «Алисы в стране чудес» и «Алисы в Зазеркалье», на самом деле звали Чарльз Доджсон, и он был философом-номиналистом. Доджсону очень нравилась идея о том, что слова означают лишь то, что он хочет, чтобы они означали.