litbaza книги онлайнДомашняяПараллельные миры. Об устройстве мироздания, высших измерениях и будущем космоса - Митио Каку

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 78 79 80 81 82 83 84 85 86 ... 121
Перейти на страницу:

В 1912 году, еще до окончания последней версии общей теории относительности, Эйнштейн задумывался о возможности использования этого преломления в качестве линзы, подобно тому как стекла ваших очков преломляют свет перед тем, как он достигнет ваших глаз. В 1936 году чешский инженер Руди Мандл написал Эйнштейну письмо, в котором спрашивал, может ли гравитационная линза преломлять свет, исходящий от близлежащей звезды. Ответ был утвердительным, но уловить такое преломление не представлялось возможным из-за несовершенства технологий того времени.

В частности, Эйнштейн понял, что мы бы увидели оптические иллюзии, такие как двойные изображения самого объекта или кольцеобразное искажение света. Свет из очень далекой галактики, проходя, к примеру, мимо нашего Солнца, миновал его бы слева и справа, прежде чем лучи соединились бы снова и достигли наших глаз. Когда мы вглядываемся в далекие галактики, то наблюдаем кольцеобразные картины, оптические иллюзии, вызванные действием, которое объясняет общая теория относительности. Эйнштейн сделал вывод, что было «немного надежды на прямое наблюдение этого явления»{179}. В сущности, он написал о том, что эта работа «не имеет большой ценности, но доставляет радость бедняге [Мандлу]».

Больше чем через 40 лет, в 1979 году, Деннис Уолш из Обсерватории Джоделл-Бэнк получил первое частичное доказательство линзирования: он открыл двойной квазар Q0957+561{180}. В 1988 году кольцо Эйнштейна впервые наблюдалось из источника радиоизлучения MG1131+0456. В 1997 году космический телескоп «Хаббл» и сеть радиотелескопов MERLIN в Великобритании при изучении далекой галактики 1938+666 уловили первое кольцо Эйнштейна совершенно правильной формы, что в очередной раз подтвердило теорию великого ученого. (Это кольцо совсем крошечное, всего лишь в одну угловую секунду, то есть размером с маленькую монетку, наблюдаемую с расстояния в 3 км.) «Сначала кольцо выглядело довольно искусственно, и мы подумали, что это какой-то дефект изображения, но потом поняли, что перед нами кольцо Эйнштейна совершенно правильной формы!» – рассказывал Йен Браун из Манчестерского университета. Сегодня кольца Эйнштейна являются важным инструментом в арсенале астрофизиков{181}. В открытом космосе было обнаружено около 64 двойных, тройных и других кратных квазаров (миражей, вызванных гравитационным линзированием Эйнштейна), что приблизительно составляет пятисотую часть всех известных квазаров.

Даже такие невидимые формы материи, как темная, можно наблюдать при помощи создаваемого ими преломления света. Таким способом можно получить карты, на которых показано распределение темной материи во Вселенной. Поскольку гравитационное линзирование Эйнштейна преломляет свет больших галактических скоплений скорее в дуги (нежели в кольца), представляется возможным оценить концентрацию темной материи в этих скоплениях. В 1986 году астрономы Национальной обсерватории оптической астрономии Стэнфордского университета и Обсерватории Пик-дю-Миди во Франции наблюдали первые гигантские галактические дуги. С тех пор было обнаружено около сотни галактических дуг, наиболее впечатляющей из которых является Абель 2218{182}.

Линзы Эйнштейна можно также использовать в качестве объективного метода измерения количества МАСНО (массивные компактные объекты гало) во Вселенной (которые состоят из обычного вещества, такого, как мертвые звезды, коричневые карлики и пылевые облака). В 1986 году Богдан Пачински из Принстона понял, что в случае, если МАСНО проходят перед звездой, они тем самым увеличивают ее яркость и создают второе изображение.

В начале 1990-х годов несколько групп ученых (в частности, французская группа EROS, американо-австралийская группа MACHO и польско-американская группа OGLE) воспользовались этим методом для изучения центра галактики Млечный Путь и обнаружили более 500 микролинзовых событий (этот результат превзошел все ожидания, поскольку некоторое количество этого вещества состояло из звезд с малой массой и неистинных МАСНО). Этот же метод может применяться для обнаружения экстрасолнечных планет, вращающихся вокруг других звезд. Поскольку планета оказывала бы очень малое, но измеримое гравитационное воздействие на свет материнской звезды, линзирование Эйнштейна, в принципе, могло бы их обнаружить. При помощи этого метода уже было выявлено небольшое количество кандидатов в экстрасолнечные планеты, некоторые из них располагаются у центра Млечного Пути.

При помощи линз Эйнштейна можно измерить даже постоянную Хаббла и космологическую константу. Постоянная Хаббла измеряется путем тщательного наблюдения. Квазары становятся ярче и тускнеют с течением времени. Можно было бы ожидать, что двойные квазары, будучи изображениями одного и того же объекта, мерцали бы в унисон. Используя имеющиеся данные о распределении вещества во Вселенной, астрономы могут вычислить долю задержки во времени, потребовавшейся свету, чтобы достичь Земли. Измерив отставание во времени, когда двойные квазары становятся ярче, можно определить, на каком расстоянии от Земли они находятся. Зная же их красное смещение, можно вычислить постоянную Хаббла. (Именно такой метод был использован применительно к квазару Q0957+561, расстояние до которого оказалось равно приблизительно 14 млрд световых лет от Земли. С тех пор постоянная Хаббла была определена путем изучения семи других квазаров. В пределах погрешности полученные при таком изучении результаты совпали с уже имеющимися данными. Интересным отличием этого метода является то, что он совершенно не зависит от яркости звезд (таких как цефеиды и сверхновые типа Iа), что подчеркивает объективность полученных результатов.)

Этим способом можно измерить и космологическую константу, в которой, возможно, заключен ключ к будущему нашей Вселенной. Такой способ вычисления немного неточен, но, в принципе, результаты совпадают с данными, полученными при применении других методов. Поскольку миллиарды лет тому назад суммарный объем Вселенной был меньше, вероятность обнаружения квазаров, образующих линзу Эйнштейна, в прошлом также была большей. Таким образом, определив количество двойных квазаров на различных этапах эволюции Вселенной, можно вычислить приблизительный объем Вселенной, а отсюда – космологическую константу, которая определяет расширение Вселенной. В 1998 году астрономы из Гарвард-Смитсоновского центра астрофизики осуществили первое приблизительное вычисление космологической константы и пришли к выводу, что она, вероятно, составляет не более 62 % от суммарного содержимого вещества/энергии Вселенной{183}. (Действительный результат, полученный при помощи спутника WMAP, составляет 73 %[44].)

1 ... 78 79 80 81 82 83 84 85 86 ... 121
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?