Шрифт:
Интервал:
Закладка:
Выходите из своей зоны комфорта и стимулируйте изменения!
Необходимо добиться оптимальной организации аналитического подразделения (глава 4). Обычно это осуществляется на основе объединенной, или гибридной, модели, когда аналитики работают в разных бизнес-подразделениях, но при этом есть централизованное аналитическое подразделение, в задачи которого входит обучение сотрудников, поддержка, разработка единых стандартов, и где у специалистов по аналитике определен четкий карьерный путь. Специалисты этого подразделения должны быть сосредоточены на качестве работы, и по крайней мере несколько из них должны заниматься предсказательной аналитикой и аналитикой на более высоком уровне, например разрабатывать прогнозные модели и меры по оптимизации. Они должны продвигать свои аналитические выводы и рекомендации и убеждать в них людей, принимающих решения (следующий уровень на рис. 13.1). В идеале они должны получать оценку своей работы по фактическому влиянию на эффективность деятельности компании.
Продвижение комплексной аналитической программы подразумевает наличие сильного руководства на основе данных. Его может осуществлять, например, вице-президент, отвечающий за аналитическое направление, или директор по данным. В компаниях из рейтинга Fortune 500 эта роль все чаще отводится CDO или CAO (глава 11). Фактическое название этой должности не так важно. На практике важно, есть ли у этого человека поддержка руководства и бюджет на реализацию аналитической программы и продвижение корпоративной культуры на основе данных.
В приложении В приводится возможный вариант заявления о видении компании в отношении данных. Заявление о видении — это мотивирующее описание того, что компания стремится достичь в среднесрочной и долгосрочной перспективах. В данном случае компания стремится стать более ориентированной на данные в таких аспектах, как навыки работы с данными, повышение общей грамотности в вопросах работы с ними и формирование соответствующей корпоративной культуры. Обсудите этот документ с коллегами? Чего стремитесь достичь вы?
Самый верхний слой, в котором растворяются все остальные, — корпоративная культура, которая формирует все остальные слои и в равной степени сама формируется под их влиянием. Фактически управление на основе данных требует наличия в компании этих компонентов и наиболее эффективных действий на каждом из этих уровней. Например, наличие в компании HiPPO может препятствовать объективному принятию решений на основе фактов. Политические игры и разобщенность данных негативно сказываются на открытости и сотрудничестве в рамках корпоративной культуры.
Многие компании прикладывают серьезные усилия, чтобы развить управление на основе данных. К сожалению, претворять в жизнь любые изменения, а особенно изменения культуры, крайне сложно. Шансы на развитие в компании успешной корпоративной культуры, основанной на данных, обычно выше, если начать заниматься этим как можно раньше, фактически создавая новую культуру, а не меняя ее. Это был один из мотивирующих факторов при написании этой книги. Я надеялся, что молодым компаниям, которые стремятся к управлению на основе данных и у которых еще впереди этап роста и привлечения новых сотрудников, это поможет стать более успешными. По результатам опроса, в котором приняли участие 368 стартапов[265], 3,26 % респондентов заявили, что у них реализовано управление на основе данных: «С самого основания компании данные — часть нашей культуры». По словам еще 44 % опрошенных, они «добились значительных улучшений и продолжают работать в направлении развития управления на основе данных». Это можно сравнить с изучением иностранного языка: многие успешно справляются с этой задачей во взрослом возрасте, но в детстве и юности учить иностранный язык бывает легче.
Еще один вопрос, который меня заинтересовал, — имеют ли некоторые онлайн-сервисы предрасположенность к управлению на основе данных, просто потому что они созданы вокруг продукта на основе данных. Возьмем, например, сайт знакомств, такой как OKCupid, рекомендательный сервис в области музыки Pandora или рекомендательный сервис в области контента Prismatic. Обязательно ли в подобных компаниях будет реализовано управление на основе данных в силу того, что их деятельность связана с данными и алгоритмами? Это вероятно, но не обязательно. Вполне возможно, что у таких компаний может быть ключевой продукт на основе данных, который развивается по принципам управления на основе данных, но, например, маркетинговые стратегии или привлечение клиентов подчиняются HiPPO.
Вероятно, здесь может иметь место явление, которое в популяционной генетике носит название «эффект основателя»[266], а в социальных науках — «эффект колеи»[267]. Если в команде, которая сформировалась на старте проекта, высокая пропорция технических специалистов и специалистов по работе с данными, которые убеждены в необходимости применения аналитических инструментов и A/B-тестирования, это может повлиять на формирование соответствующей корпоративной культуры и задать тон в том, каких сотрудников компания будет нанимать в дальнейшем. Очевидно одно: в любой компании можно внедрить управление на основе данных. При конкуренции в области аналитики нет ограничений по сфере деятельности.
На протяжении всей книги я намеренно не делал акцента на технологиях. Не потому что это неважно, а потому что, по моему мнению, корпоративная культура в итоге — более весомый фактор. Позвольте объяснить мою точку зрения. Представьте, что в компанию приходит специалист по работе с данными и предлагает новейшие и самые эффективные инструменты (Spark, D3, R, библиотека Scikit-Learn и так далее). Если в корпоративной культуре компании не принято активно работать с данными, например там не проводят А/В-тестирование, а полагаются на мнение и опыт экспертов (HiPPO), работа специалиста по данным вряд ли окажет существенное влияние. Вероятно, он вскоре просто разочаруется и покинет компанию. А теперь представьте обратную ситуацию: в компании развита корпоративная культура на основе данных, но нет необходимых инструментов и технологий. Возможно, в компании ведутся основные реляционные базы данных, но до настоящего момента не возникала потребность в графовой базе данных или в кластере Hadoop. В подобных условиях у специалиста по работе с данными больше шансов получить финансирование и поддержку на разработку или приобретение любых инструментов, которые окажут влияние на эффективность деятельности компании. Иными словами, наличие правильных инструментов способно оказать огромное влияние. Но отсутствие правильной культуры или хотя бы стремления создать правильную культуру сведет на нет все усилия.