Шрифт:
Интервал:
Закладка:
Поиск решения для трансформированной модели межотраслевого баланса может быть связан, в частности, с описанием современной модели рынка нейронной сетью, содержащей: в качестве входного слоя – сырье и средства производства, в качестве выходного слоя – предметы потребления, а в качестве скрытого (связующего) слоя – информационные технологии.
Есть одна дополнительная черта, характеризующая информационно-технологическую революцию по сравнению с ее историческими предшественницами. Мокир показал, что технологические революции имели место лишь в немногих обществах и распространялись в относительно ограниченных регионах, нередко изолированных в пространстве и во времени по сравнению с другими регионами планеты. Так, в то время, как европейцы заимствовали некоторые открытия, сделанные в Китае, Китай и Япония на протяжении многих столетий усваивали европейскую технологию только в очень ограниченных рамках, сведенных главным образом к ее военным применениям. Контакт между цивилизациями, стоявшими на разных технологических уровнях, часто принимал форму разрушения наименее развитых или тех, которые применяли свои знания в основном к невоенной технологии, как было в случае американских цивилизаций, уничтоженных испанскими завоевателями, иногда путем непреднамеренной биологической войны. Индустриальная революция распространялась на большую часть земного шара со своих родных западноевропейских берегов в течение последующих двух столетий. Но ее распространение было высокоселективным, а его темп, по нынешним стандартам распространения технологий, – довольно медленным. И действительно, даже в Британии середины XIX в. сектора экономики, в которых было занято большинство рабочей силы, дававшие, по меньшей мере, половину валового национального продукта, не были затронуты новыми индустриальными технологиями. Кроме того, планетарный охват индустриальной революции в последующие десятилетия чаще всего принимал форму колониального господства, будь то в Индии при Британской империи, Латинской Америке, попавшей в торговую и индустриальную зависимость от Британии и Соединенных Штатов, в Африке, расчлененной по Берлинскому договору, или в Японии и Китае, открытых для иностранной торговли пушками западных кораблей. В противоположность этому новые информационные технологии распространились по земному шару с молниеносной скоростью менее чем за два десятилетия, с середины 1970-х до середины 1990-х гг., продемонстрировав то, что следует считать характерным для этой технологической революции: немедленное применение к своему собственному развитию технологий, которые она создает, связывая мир через информационную технологию. Конечно, в мире имеются большие области и значительные сегменты населения, не включенные в новую технологическую систему. Скорость технологического распространения информационных технологий оказалась селективной как социально, так и функционально. Люди, страны и регионы получают доступ к технологической мощи в различные сроки, и в этом – критически важный источник неравенства в нашем обществе.
Инженерные микропроцессы как основа макроэкономических изменений на базе электроники и информации
Хотя научные и индустриальные предшественницы информационных технологий, основанных на электронике, могут быть найдены за десятилетия до 1940-х гг. (не последними из них было изобретение телефона Беллом в 1876 г.; радио, изобретенное Поповым и Маркони в 1898 г.; электронная лампа, созданная Де Форестом в 1906 г.), именно в период Второй мировой войны и после нее были сделаны главные технологические прорывы в электронике: первый программируемый компьютер и транзистор – основа микроэлектроники, истинное ядро информационно-технологической революции в XX в. Однако только в 1970-х гг. новые информационные технологии распространились широко, ускоряя свое синергетическое развитие и сближаясь в рамках новой парадигмы. Проследим стадии инновации в трех главных технологических областях, которые, будучи тесно взаимосвязанными, составляют историю технологий, основанных на электронике: микроэлектронике, компьютерной технике и телекоммуникациях.
Транзистор, изобретенный в 1947 г. физиками – Бардином, Браттеном и Шокли из Bell Laboratories в Муррей Хилл, Нью-Джерси (они получили Нобелевскую премию за свое открытие), сделал возможным обработку электрических импульсов с большой скоростью в двоичном переключательном режиме, позволяя, таким образом, кодировать логику и устанавливать коммуникацию с машинами и между машинами. Современные обрабатывающие устройства – полупроводниковые интегральные микросхемы, часто называемые просто чипами, состоят из миллионов транзисторов. Первый шаг в распространении транзисторов был сделан с изобретением Шокли плоскостного транзистора (Junction transistor) в 1951 г. Однако его изготовление и широкое использование потребовало новых производственных технологий и использования соответствующих материалов. Переход на кремний представлял собой революцию, буквально сделанную на песке. Он был предложен Texas Instruments в Далласе в 1954 г. (шаг, которому способствовало приглашение в 1953 г. Гордона Тила, одного из ведущих ученых из Bell Laboratories). Изобретение планарного процесса в Fairchild Semiconductors в 1959 г. (в Силиконовой долине) открыло возможность интеграции миниатюризованных компонентов с прецезионным производством.
Однако решающий шаг в микроэлектронике был сделан в 1957 г.: Джек Килби, инженер Texas Instruments (позднее получивший патент), и Боб Нойс, один из основателей Fairchild, одновременно изобрели интегральную схему. Но именно Нойс первым изготовил интегральные схемы, используя планарный процесс. Это вызвало технологический взрыв: всего за три года цены на полупроводники упали на 85 %, а в следующие десять лет производство выросло в 20 раз, причем половина выпуска шла на военные нужды. Историческое сравнение: в Британии в период индустриальной революции потребовалось 70 лет (1780–1850), чтобы цены на хлопчатобумажные ткани упали на 85 %. Затем в течение 1960-х гг. движение еще более ускорилось: по мере того как совершенствовалась технология производства и конструкция чипов улучшалась с помощью компьютеров, использующих более быстрые и более мощные микроэлектронные устройства, средняя цена интегральной схемы упала с 50 долл, в 1962 г. до 1 долл, в 1971 г.
Гигантский скачок вперед в распространении микроэлектроники во всех машинах произошел в 1971 г., когда Тед Хофф, инженер Intel (также в Силиконовой долине), изобрел микропроцессор, т. е. компьютер на чипе. Таким образом, новые возможности обработки информации получили повсеместное применение. Шла постоянная погоня за увеличением интегральной мощности схем на одном чипе, технология проектирования и производства постоянно превышала пределы интеграции, которые считались физически невозможными на базе кремниевых материалов. В середине 1990-х гг. технические оценки еще давали лет 10–20 хорошей жизни кремниевым схемам, несмотря на то, что ускорились исследования альтернативных материалов. Аналитически важно указать скорость и степень технологических изменений.
Как известно, мощность чипов можно оценить комбинацией трех характеристик: интеграционной способностью, указанной наименьшей шириной линии на чипе, измеряемой в микронах (1 микрон = 0,000001 м); объемом памяти, измеряемым в битах (в килобитах и мегабитах); и скоростью микропроцессора, измеряемой в мегагерцах. Так, первый процессор 1971 г. содержал линии в 6,5 микрона, в 1980 г. ширина достигла 4 микрон, в 1987 г. -1 микрона, в 1995 г. чип Intel’s Pentium имел ширину линии в 0,35 микрона, 0,25 микрона к 1999 г. Таким образом, там, где в 1971 г. на чипе размером с чертежную кнопку умещалось 2300