Шрифт:
Интервал:
Закладка:
Изучением полета мух активно занимаются прикладные физика, энергетика и робототехника. Чтобы быть на передовой в области полетов, мухи применяют высокотехнологичное оборудование. Генерирование частоты 100 или более ударов в секунду выходит за физиологические пределы скорости возбуждения нервной ткани. По этой причине верхние пределы полета мухи достигаются не только за счет нервного контроля; они происходят благодаря особенностям строения мышц и механизмам соединения частей крылового аппарата двукрылых[50].
В ходе эволюции у мух образовался комплекс из системы рычагов, точек опоры, крошечных выступов на жилках крыльев, механизмов сокращения мышц и системы, очень похожей на ручное сцепление в трансмиссии автомобиля, связанной с чем-то вроде коробки передач, которая позволяет мухам управлять каждым крылом по отдельности. Частота взмахов крыльями синхронизируется с помощью скутеллума, или щитка среднеспинки, который механически соединяет крылья друг с другом, тогда как выпуклая нижняя часть груди (субэпимеральный гребень) соединяет и координирует каждое крыло с соответствующим жужжельцем. При этом «механизм сцепления», соединяющий щиток с каждым крылом, может быть задействован (или не задействован) с обеих сторон; и таким образом крылья могут двигаться независимо друг от друга, что повышает маневренность. А «коробка передач», которая расположена в основании каждого крыла и состоит из трех структур, работающих подобно переключению передач в автомобиле, и регулирует амплитуду биения крыльев от низкой до высокой.
Даже учитывая все механизмы для подъема, мухи не ушли бы далеко без баланса и рулевого управления. Система равновесия человека, в отличие от мухи, находится в ушах. Мухи балансируют и управляют жужжальцами и рудиментами второй пары крыльев, которые я упоминал ранее. Во время полета жужжальца двигаются как барабанные палочки: бьют с той же скоростью, что и крылья, но, как правило, в противофазе. Они действуют как гироскопы, качаясь вверх, когда крылья опускаются, и наоборот. Если муха отклоняется от курса, переворачивается или меняет высоту во время полета, жужжальца изгибаются у основания, при этом сохраняя первоначальную плоскость движения. Специальные нервные клетки улавливают повороты[51], позволяя мухе корректировать ориентацию.
Несмотря на название отряда Двукрылых, у некоторых мух вообще нет крыльев. У их предков они были, но, подобно нелетающим птицам на островах, где нет хищников, мухи утратили крылья, поскольку на протяжении многих поколений образ жизни сделал их наличие совершенно бессмысленным и даже излишним. Показательный пример: паразитирующие на летучих мышах мухи-кровососки. Если всю свою жизнь вы проводите, ползая, как краб, по телу летучей мыши, вам не нужно самостоятельно взлетать, чтобы добраться из одного места в другое, за вас это сделают летучие мыши. Перебраться с одного хозяина на другого можно в тот момент, когда летучие мыши собираются вместе и сидят, плотно прижавшись друг к другу, как они довольно часто делают. Итак, мух-кровососк, паразитирующих на летучих мышах (стреблид и мух-паучниц или никтерибиид), насчитывается – что не может не удивлять – 511 известных видов в двух семействах, и они постепенно теряли крылья на протяжении тысячелетий. Я видел некоторых из них, изучая летучих мышей, когда учился в университете, и, если бы мне никто не сказал, я бы никогда не подумал, что это мухи.
Если вы задавались вопросом о способности мух преодолевать гравитацию и ходить по окнам и потолку, то это возможно благодаря двум или трем подушечкам на каждой лапке, называемым пульвиллами. От каждой из них отходят тысячи трубочек, заканчивающихся очень гладкой плоской подушечкой. Когда-то считалось, что пульвиллы работают как присоски, но сейчас известно, что они похожи скорее на липучки. Крошечные капли клейкого вещества, состоящего из сахаров и масел, просачиваются через эти трубочки, и муха прикрепляется даже к самой гладкой поверхности благодаря силе молекулярного притяжения. Муха ходит, меняя угол наклона подушечек лап, чтобы ослабить фиксацию[52]. Домовые гекконы используют тот же трюк, охотясь на насекомых и бегая по стенам и потолкам.
Быстрота мух и их наглость, с которой они не двигаются с места или тут же возвращаются, несмотря на наши усилия отогнать их, отчасти объясняются использованием тех самых щетинок и волосков, о которых мы узнали во время нашего визита к Марку Дейрупу. Основание каждого фолликула иннервировано, это делает муху чувствительной к мельчайшим изменениям воздушного потока. Такая система раннего предупреждения помогает мухе обнаружить приближающегося врага[53], и это объясняет, почему муху так трудно прихлопнуть.
Когда ученые внимательно изучили, как летают комары, то обнаружили кое-что новое. При помощи восьми камер замедленной съемки удалось рассмотреть полет под различными углами и создать трехмерную модель движений крыльев писклявого насекомого, степень подвижности которых ничтожные 40°, что почти вдвое меньше, чем у пчелы. Этого поверхностного движения должно быть недостаточно, чтобы комар летал, используя только разгонный вихрь (воздушный карман, который помогает создавать подъемную силу). Благодаря камерам удалось разглядеть второй вихрь на задней части крыльев. Поскольку задняя линия крыла повторяет траекторию передней, она улавливает вихревой след предыдущего взмаха, повторно используя энергию. Это обеспечивает дополнительный подъем, за счет которого комар и доставляет нам неприятности. Благодаря второму вихрю энергия экономится за счет уменьшения размера траектории, которую должно пройти каждое крыло. При скорости 700 ударов в секунду это дает значительную экономию.
Полеты с высоким КПД позволяют мухам мигрировать на удивительно далекие расстояния, как, например, мармеладная муха-журчалка. Миллионы таких мух дважды в год пролетают над швейцарскими Альпами во время путешествия туда и обратно из Северной в Южную Европу. Основываясь на наблюдениях за массовыми миграциями насекомых с воздуха, английский генетик из Университета Эксетера Карл Уоттон предположил, что миллиарды журчалок различных видов ежегодно мигрируют по всей Европе нескончаемым потоком крошечных тел, сверкающих на фоне гор. При попутном ветре они летят высоко, при встречном – низко. «Они летят быстро… и не останавливаются, – говорит Уоттон. – Бабочки снуют по кругу, как в барабане стиральной машины, но журчалки просто пролетают прямо над нами»[54].
Датчики движения
Картинка в поле зрения летающих организмов меняется очень быстро, поэтому хорошее зрение им необходимо, за исключением разве что летучих мышей, обладающих эхолокацией. Глаз насекомого существенного отличается от нашего. Глаз позвоночного состоит из одной секции, а у насекомого – из многочисленных фасеток, вместе составляющих шестиугольники, напоминающие соты. Каждая фасетка, или омматидий, – полностью функционирующий орган зрения, независимо посылающий сигнал в мозг. Фасетки глаз насекомого обладают шириной обычно около 10 мкм, то